These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 30579315)

  • 1. Non-orthogonal determinants in multi-Slater-Jastrow trial wave functions for fixed-node diffusion Monte Carlo.
    Pathak S; Wagner LK
    J Chem Phys; 2018 Dec; 149(23):234104. PubMed ID: 30579315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computing the energy of a water molecule using multideterminants: a simple, efficient algorithm.
    Clark BK; Morales MA; McMinis J; Kim J; Scuseria GE
    J Chem Phys; 2011 Dec; 135(24):244105. PubMed ID: 22225142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-Jastrow trial wavefunctions for electronic structure calculations with quantum Monte Carlo.
    Bouabça T; Braïda B; Caffarel M
    J Chem Phys; 2010 Jul; 133(4):044111. PubMed ID: 20687637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Singlet-triplet gaps in diradicals obtained with diffusion quantum Monte Carlo using a Slater-Jastrow trial wavefunction with a minimum number of determinants.
    Zhou X; Wang F
    Phys Chem Chem Phys; 2019 Sep; 21(36):20422-20431. PubMed ID: 31501831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energies of the first row atoms from quantum Monte Carlo.
    Brown MD; Trail JR; Ríos PL; Needs RJ
    J Chem Phys; 2007 Jun; 126(22):224110. PubMed ID: 17581047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient local energy evaluation for multi-Slater wave functions in orbital space quantum Monte Carlo.
    Mahajan A; Sharma S
    J Chem Phys; 2020 Nov; 153(19):194108. PubMed ID: 33218236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular hydrogen adsorbed on benzene: Insights from a quantum Monte Carlo study.
    Beaudet TD; Casula M; Kim J; Sorella S; Martin RM
    J Chem Phys; 2008 Oct; 129(16):164711. PubMed ID: 19045302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum Monte Carlo study of the Ne atom and the Ne+ ion.
    Drummond ND; López Ríos P; Ma A; Trail JR; Spink GG; Towler MD; Needs RJ
    J Chem Phys; 2006 Jun; 124(22):224104. PubMed ID: 16784260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Convergence to the fixed-node limit in deep variational Monte Carlo.
    Schätzle Z; Hermann J; Noé F
    J Chem Phys; 2021 Mar; 154(12):124108. PubMed ID: 33810658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Full Wave Function Optimization with Quantum Monte Carlo-A Study of the Dissociation Energies of ZnO, FeO, FeH, and CrS.
    Ludovicy J; Mood KH; Lüchow A
    J Chem Theory Comput; 2019 Oct; 15(10):5221-5229. PubMed ID: 31433631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excited states of methylene from quantum Monte Carlo.
    Zimmerman PM; Toulouse J; Zhang Z; Musgrave CB; Umrigar CJ
    J Chem Phys; 2009 Sep; 131(12):124103. PubMed ID: 19791848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of the Diffusion Quantum Monte Carlo Method with a Single-Slater-Jastrow Trial Wavefunction Using Natural Orbitals and Density Functional Theory Orbitals on Atomization Energies of the Gaussian-2 Set.
    Wang T; Zhou X; Wang F
    J Phys Chem A; 2019 May; 123(17):3809-3817. PubMed ID: 30950620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excited States with Selected Configuration Interaction-Quantum Monte Carlo: Chemically Accurate Excitation Energies and Geometries.
    Dash M; Feldt J; Moroni S; Scemama A; Filippi C
    J Chem Theory Comput; 2019 Sep; 15(9):4896-4906. PubMed ID: 31348645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusion Monte Carlo method on small boron clusters using single- and multi- determinant-Jastrow trial wavefunctions.
    Peng Y; Zhou X; Wang Z; Wang F
    J Chem Phys; 2021 Jan; 154(2):024301. PubMed ID: 33445915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perturbatively Selected Configuration-Interaction Wave Functions for Efficient Geometry Optimization in Quantum Monte Carlo.
    Dash M; Moroni S; Scemama A; Filippi C
    J Chem Theory Comput; 2018 Aug; 14(8):4176-4182. PubMed ID: 29953810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitation energies from diffusion Monte Carlo using selected configuration interaction nodes.
    Scemama A; Benali A; Jacquemin D; Caffarel M; Loos PF
    J Chem Phys; 2018 Jul; 149(3):034108. PubMed ID: 30037241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Approaching chemical accuracy with quantum Monte Carlo.
    Petruzielo FR; Toulouse J; Umrigar CJ
    J Chem Phys; 2012 Mar; 136(12):124116. PubMed ID: 22462844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical accuracy from quantum Monte Carlo for the benzene dimer.
    Azadi S; Cohen RE
    J Chem Phys; 2015 Sep; 143(10):104301. PubMed ID: 26374029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Full Wave Function Optimization with Quantum Monte Carlo and Its Effect on the Dissociation Energy of FeS.
    Haghighi Mood K; Lüchow A
    J Phys Chem A; 2017 Aug; 121(32):6165-6171. PubMed ID: 28745900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum Monte Carlo study of the optical and diffusive properties of the vacancy defect in diamond.
    Hood RQ; Kent PR; Needs RJ; Briddon PR
    Phys Rev Lett; 2003 Aug; 91(7):076403. PubMed ID: 12935038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.