These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 3057961)

  • 1. Inspiratory work of breathing during spontaneous ventilation using demand valves and continuous flow systems.
    Beydon L; Chasse M; Harf A; Lemaire F
    Am Rev Respir Dis; 1988 Aug; 138(2):300-4. PubMed ID: 3057961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved efficacy of spontaneous breathing with inspiratory pressure support.
    Brochard L; Pluskwa F; Lemaire F
    Am Rev Respir Dis; 1987 Aug; 136(2):411-5. PubMed ID: 3619200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Quantitative comparison of ventilator-induced work during simulated CPAP in eight demand-flow valve ventilators].
    Nishimura M; Imanaka H; Taenaka N; Yoshiya I; Takezawa J
    Masui; 1989 Aug; 38(8):1017-29. PubMed ID: 2681861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inspiratory muscle work of breathing during flow-by, demand-flow, and continuous-flow systems in patients with chronic obstructive pulmonary disease.
    Sassoon CS; Lodia R; Rheeman CH; Kuei JH; Light RW; Mahutte CK
    Am Rev Respir Dis; 1992 May; 145(5):1219-22. PubMed ID: 1586070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pressure support compensation for inspiratory work due to endotracheal tubes and demand continuous positive airway pressure.
    Fiastro JF; Habib MP; Quan SF
    Chest; 1988 Mar; 93(3):499-505. PubMed ID: 3277803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inspiratory work imposed by demand valve ventilator circuits.
    Oh TE; Lin ES; Bhatt S
    Anaesth Intensive Care; 1991 May; 19(2):187-91. PubMed ID: 2069237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pressure-time product and work of breathing during biphasic continuous positive airway pressure and assisted spontaneous breathing.
    Calzia E; Lindner KH; Witt S; Schirmer U; Lange H; Stenz R; Georgieff M
    Am J Respir Crit Care Med; 1994 Oct; 150(4):904-10. PubMed ID: 7921461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Minimizing work of breathing with continuous positive airway pressure and intermittent mandatory ventilation: an improved continuous low-flow system.
    Hillman DR; Breakey JN; Lam YM; Noffsinger WJ; Finucane KE
    Crit Care Med; 1987 Jul; 15(7):665-70. PubMed ID: 3297491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of different inspiratory rise time and cycling off criteria during pressure support ventilation in patients recovering from acute lung injury.
    Chiumello D; Pelosi P; Taccone P; Slutsky A; Gattinoni L
    Crit Care Med; 2003 Nov; 31(11):2604-10. PubMed ID: 14605531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unloading work of breathing during high-frequency oscillatory ventilation: a bench study.
    van Heerde M; Roubik K; Kopelent V; Plötz FB; Markhorst DG
    Crit Care; 2006; 10(4):R103. PubMed ID: 16848915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of flow triggering on breathing effort during partial ventilatory support.
    Aslanian P; El Atrous S; Isabey D; Valente E; Corsi D; Harf A; Lemaire F; Brochard L
    Am J Respir Crit Care Med; 1998 Jan; 157(1):135-43. PubMed ID: 9445291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inspiratory work of breathing on flow-by and demand-flow continuous positive airway pressure.
    Sassoon CS; Giron AE; Ely EA; Light RW
    Crit Care Med; 1989 Nov; 17(11):1108-14. PubMed ID: 2676347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of pressure- and flow-triggered synchronous intermittent mandatory ventilation on inspiratory muscle work.
    Sassoon CS; Del Rosario N; Fei R; Rheeman CH; Gruer SE; Mahutte CK
    Crit Care Med; 1994 Dec; 22(12):1933-41. PubMed ID: 7988129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Work of breathing during lung-protective ventilation in patients with acute lung injury and acute respiratory distress syndrome: a comparison between volume and pressure-regulated breathing modes.
    Kallet RH; Campbell AR; Dicker RA; Katz JA; Mackersie RC
    Respir Care; 2005 Dec; 50(12):1623-31. PubMed ID: 16318643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Total inspiratory work with modern demand valve devices compared to continuous flow CPAP.
    Samodelov LF; Falke KJ
    Intensive Care Med; 1988; 14(6):632-9. PubMed ID: 3053843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imposed work of breathing during high-frequency oscillatory ventilation: a bench study.
    van Heerde M; van Genderingen HR; Leenhoven T; Roubik K; Plötz FB; Markhorst DG
    Crit Care; 2006 Feb; 10(1):R23. PubMed ID: 16469130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The effects of extrinsic positive end-expiratory pressure on work of breathing in patients with chronic obstructive pulmonary disease].
    Kong W; Wang C; Yang Y; Huang K; Jiang C; Weng X
    Zhonghua Nei Ke Za Zhi; 2001 Jun; 40(6):385-9. PubMed ID: 11798603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of tracheal pressure and imposed expiratory work of breathing by the endotracheal tube, heat and moisture exchanger, and ventilator during mechanical ventilation.
    Uchiyama A; Yoshida T; Yamanaka H; Fujino Y
    Respir Care; 2013 Jul; 58(7):1157-69. PubMed ID: 23232731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of auto-regulated inspiratory support during rebreathing and acute lung injury in pigs.
    Desmettre TJ; Chambrin MC; Mangalaboyi J; Pigot A; Chopin C
    Respir Care; 2005 Aug; 50(8):1050-61. PubMed ID: 16225710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Home versus intensive care pressure support devices. Experimental and clinical comparison.
    Lofaso F; Brochard L; Hang T; Lorino H; Harf A; Isabey D
    Am J Respir Crit Care Med; 1996 May; 153(5):1591-9. PubMed ID: 8630607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.