These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 3058001)

  • 1. Imprinting of genome precludes parthenogenesis, but uniparental embryos can be rescued to reproduce.
    Markert CL
    Ann N Y Acad Sci; 1988; 541():633-8. PubMed ID: 3058001
    [No Abstract]   [Full Text] [Related]  

  • 2. Genomic imprinting is a barrier to parthenogenesis in mammals.
    Kono T
    Cytogenet Genome Res; 2006; 113(1-4):31-5. PubMed ID: 16575160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide methylation patterns in normal and uniparental early mouse embryos.
    Barton SC; Arney KL; Shi W; Niveleau A; Fundele R; Surani MA; Haaf T
    Hum Mol Genet; 2001 Dec; 10(26):2983-7. PubMed ID: 11751680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site of action of imprinted genes revealed by phenotypic analysis of parthenogenetic embryos.
    Varmuza S; Mann M; Rogers I
    Dev Genet; 1993; 14(3):239-48. PubMed ID: 8358868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide gene expression profiling reveals aberrant MAPK and Wnt signaling pathways associated with early parthenogenesis.
    Liu N; Enkemann SA; Liang P; Hersmus R; Zanazzi C; Huang J; Wu C; Chen Z; Looijenga LH; Keefe DL; Liu L
    J Mol Cell Biol; 2010 Dec; 2(6):333-44. PubMed ID: 20926514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parthenogenesis, homozygosity, and cloning in mammals.
    Markert CL
    J Hered; 1982; 73(6):390-7. PubMed ID: 7153493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parent-of-origin effects on genome-wide DNA methylation in the Cape honey bee (Apis mellifera capensis) may be confounded by allele-specific methylation.
    Remnant EJ; Ashe A; Young PE; Buchmann G; Beekman M; Allsopp MH; Suter CM; Drewell RA; Oldroyd BP
    BMC Genomics; 2016 Mar; 17():226. PubMed ID: 26969617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression profiling of uniparental mouse embryos is inefficient in identifying novel imprinted genes.
    Ruf N; Dünzinger U; Brinckmann A; Haaf T; Nürnberg P; Zechner U
    Genomics; 2006 Apr; 87(4):509-19. PubMed ID: 16455231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early epigenetic reprogramming in fertilized, cloned, and parthenogenetic embryos.
    Sepulveda-Rincon LP; Solanas Edel L; Serrano-Revuelta E; Ruddick L; Maalouf WE; Beaujean N
    Theriogenology; 2016 Jul; 86(1):91-8. PubMed ID: 27156679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A parthenogenesis gene of apomict origin elicits embryo formation from unfertilized eggs in a sexual plant.
    Conner JA; Mookkan M; Huo H; Chae K; Ozias-Akins P
    Proc Natl Acad Sci U S A; 2015 Sep; 112(36):11205-10. PubMed ID: 26305939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis and identification of imprinted genes.
    Kelsey G; Reik W
    Methods; 1998 Feb; 14(2):211-34. PubMed ID: 9571078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Different influences of genomic imprinting on the development of parthenogenetic cell clones in C57BL/6 and CBA mice].
    Isaev DA; Martynova MI; Platonov EC; Koniukhov BV
    Ontogenez; 2001; 32(5):353-9. PubMed ID: 11605408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of fibroblast growth factor 2 and insulin-like growth factor II on the development of parthenogenetic mouse embryos in vitro.
    Penkov LI; Platonov ES; New DA
    In Vitro Cell Dev Biol Anim; 2001; 37(7):440-4. PubMed ID: 11573819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cell cycle-associated change in Ca2+ releasing activity leads to the generation of Ca2+ transients in mouse embryos during the first mitotic division.
    Kono T; Jones KT; Bos-Mikich A; Whittingham DG; Carroll J
    J Cell Biol; 1996 Mar; 132(5):915-23. PubMed ID: 8603922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abnormal development of embryonic and extraembryonic cell lineages in parthenogenetic mouse embryos.
    Sturm KS; Flannery ML; Pedersen RA
    Dev Dyn; 1994 Sep; 201(1):11-28. PubMed ID: 7803844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental ability of trophoblast stem cells in uniparental mouse embryos.
    Ogawa H; Shindo N; Kumagai T; Usami Y; Shikanai M; Jonwn K; Fukuda A; Kawahara M; Sotomaru Y; Tanaka S; Arima T; Kono T
    Placenta; 2009 May; 30(5):448-56. PubMed ID: 19345411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On static eggs and dynamic embryos: a systems perspective.
    Austriaco NP
    Natl Cathol Bioeth Q; 2002; 2(4):659-83. PubMed ID: 12854611
    [No Abstract]   [Full Text] [Related]  

  • 18. The distinction between parthenotes and embryos is not easily made.
    Schwartz PH
    Am J Bioeth; 2011 Mar; 11(3):31-2. PubMed ID: 21400382
    [No Abstract]   [Full Text] [Related]  

  • 19. Optimal developmental stage for vitrification of parthenogenetically activated porcine embryos.
    Li R; Li J; Liu Y; Kragh PM; Hyttel P; Schmidt M; Callesen H
    Cryobiology; 2012 Feb; 64(1):60-4. PubMed ID: 21945817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of 3-hydroxyflavone on pig embryos produced by parthenogenesis or somatic cell nuclear transfer.
    Uhm SJ; Gupta MK; Das ZC; Lim KT; Yang JH; Lee HT
    Reprod Toxicol; 2011 Feb; 31(2):231-8. PubMed ID: 21126572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.