These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 30580046)

  • 1. Spin locking in liquid entrapped in nanocavities: Application to study connective tissues.
    Furman G; Meerovich V; Sokolovsky V; Xia Y
    J Magn Reson; 2019 Feb; 299():66-73. PubMed ID: 30580046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spin-lattice relaxation in liquid entrapped in a nanocavity.
    Furman G; Meerovich V; Sokolovsky V; Xia Y
    J Magn Reson; 2020 Feb; 311():106669. PubMed ID: 31881481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anisotropy of spin-spin and spin-lattice relaxation times in liquids entrapped in nanocavities: Application to MRI study of biological systems.
    Furman GB; Goren SD; Meerovich VM; Sokolovsky VL
    J Magn Reson; 2016 Feb; 263():71-78. PubMed ID: 26773529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anisotropy of Transverse Spin Relaxation in H
    Furman G; Meerovich V; Petrov D; Sokolovsky V; Xia Y
    Hyperfine Interact; 2021 Dec; 242(1):. PubMed ID: 35990926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of Zeeman and dipolar states in the spin locking in a liquid entrapped in nano-cavities: Application to study of biological systems.
    Furman G; Kozyrev A; Meerovich V; Sokolovsky V; Xia Y
    J Magn Reson; 2021 Apr; 325():106933. PubMed ID: 33636633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation of transverse relaxation time with structure of biological tissue.
    Furman GB; Meerovich VM; Sokolovsky VL
    J Magn Reson; 2016 Sep; 270():7-11. PubMed ID: 27380185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropy of transverse and longitudinal relaxations in liquids entrapped in nano- and micro-cavities of a plant stem.
    Furman G; Goren S; Meerovich V; Panich A; Sokolovsky V; Xia Y
    J Magn Reson; 2021 Oct; 331():107051. PubMed ID: 34455368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropy of spin relaxation of water protons in cartilage and tendon.
    Momot KI; Pope JM; Wellard RM
    NMR Biomed; 2010 Apr; 23(3):313-24. PubMed ID: 20013798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relaxation anisotropy of quantitative MRI parameters in biological tissues.
    Hänninen NE; Liimatainen T; Hanni M; Gröhn O; Nieminen MT; Nissi MJ
    Sci Rep; 2022 Jul; 12(1):12155. PubMed ID: 35840627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transverse relaxation mechanisms in articular cartilage.
    Mlynárik V; Szomolányi P; Toffanin R; Vittur F; Trattnig S
    J Magn Reson; 2004 Aug; 169(2):300-7. PubMed ID: 15261626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropic analysis of multi-component T2 and T1ρ relaxations in achilles tendon by NMR spectroscopy and microscopic MRI.
    Wang N; Xia Y
    J Magn Reson Imaging; 2013 Sep; 38(3):625-33. PubMed ID: 23349070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of partial H2O-D2O replacement on the anisotropy of transverse proton spin relaxation in bovine articular cartilage.
    Tadimalla S; Momot KI
    PLoS One; 2014; 9(12):e115288. PubMed ID: 25545955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D-T
    Sharafi A; Baboli R; Chang G; Regatte RR
    J Magn Reson Imaging; 2019 Oct; 50(4):1207-1218. PubMed ID: 30693600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spin-lattice relaxation rates and water content of freeze-dried articular cartilage.
    Damion RA; Pawaskar SS; Ries ME; Ingham E; Williams S; Jin Z; Radjenovic A
    Osteoarthritis Cartilage; 2012 Feb; 20(2):184-90. PubMed ID: 22197886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of motion load changes on tendon tissues and articular cartilage. A biochemical and scanning electron microscopic study on rabbits.
    Videman T; Eronen I; Candolin T
    Scand J Work Environ Health; 1979; 5 suppl 3():56-67. PubMed ID: 545694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dependencies of multi-component T2 and T1ρ relaxation on the anisotropy of collagen fibrils in bovine nasal cartilage.
    Wang N; Xia Y
    J Magn Reson; 2011 Sep; 212(1):124-32. PubMed ID: 21788148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium ions in ordered environments in biological systems: analysis of 23Na NMR spectra.
    Kemp-Harper R; Wickstead B; Wimperis S
    J Magn Reson; 1999 Oct; 140(2):351-62. PubMed ID: 10497043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orientation anisotropy of quantitative MRI relaxation parameters in ordered tissue.
    Hänninen N; Rautiainen J; Rieppo L; Saarakkala S; Nissi MJ
    Sci Rep; 2017 Aug; 7(1):9606. PubMed ID: 28852032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Order parameters of the orientation distribution of collagen fibers in Achilles tendon by 1H NMR of multipolar spin states.
    Fechete R; Demco DE; Blümich B
    NMR Biomed; 2003 Dec; 16(8):479-83. PubMed ID: 14696005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magic sandwich echo relaxation mapping of anisotropic systems.
    Regatte RR; Schweitzer ME; Jerschow A; Reddy R
    Magn Reson Imaging; 2007 Apr; 25(3):433-8. PubMed ID: 17371736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.