BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30580211)

  • 1. Lead and antimony from bullet weathering in newly constructed target berms: Chemical speciation, mobilization, and remediation strategies.
    Barker AJ; Douglas TA; Ilgen AG; Trainor TP
    Sci Total Environ; 2019 Mar; 658():558-569. PubMed ID: 30580211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attenuation of Pb and Sb in shooting range soils by Fe amendments.
    Barker AJ; Douglas TA; Spaleta KJ; Trainor TP
    Chemosphere; 2023 Mar; 318():137899. PubMed ID: 36693479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antimony (Sb) and lead (Pb) in contaminated shooting range soils: Sb and Pb mobility and immobilization by iron based sorbents, a field study.
    Okkenhaug G; Grasshorn Gebhardt KA; Amstaetter K; Bue HL; Herzel H; Mariussen E; Rossebø Almås Å; Cornelissen G; Breedveld GD; Rasmussen G; Mulder J
    J Hazard Mater; 2016 Apr; 307():336-43. PubMed ID: 26799225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effectiveness of best management practices in reducing Pb-bullet weathering in a shooting range in Florida.
    Yin X; Saha UK; Ma LQ
    J Hazard Mater; 2010 Jul; 179(1-3):895-900. PubMed ID: 20399014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution, chemical speciation, and mobility of lead and antimony originating from small arms ammunition in a coarse-grained unsaturated surface sand.
    Lewis J; Sjöström J; Skyllberg U; Hägglund L
    J Environ Qual; 2010; 39(3):863-70. PubMed ID: 20400582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bullet on bullet fragmentation profile in soils.
    Martin WA; Nestler CC; Wynter M; Larson SL
    J Environ Manage; 2014 Dec; 146():369-372. PubMed ID: 25201767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lead contamination in shooting range soils from abrasion of lead bullets and subsequent weathering.
    Hardison DW; Ma LQ; Luongo T; Harris WG
    Sci Total Environ; 2004 Jul; 328(1-3):175-83. PubMed ID: 15207582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weathering of lead bullets and their environmental effects at outdoor shooting ranges.
    Cao X; Ma LQ; Chen M; Hardison DW; Harris WG
    J Environ Qual; 2003; 32(2):526-34. PubMed ID: 12708676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial distribution and speciation of lead around corroding bullets in a shooting range soil studied by micro-X-ray fluorescence and absorption spectroscopy.
    Vantelon D; Lanzirotti A; Scheinost AC; Kretzschmar R
    Environ Sci Technol; 2005 Jul; 39(13):4808-15. PubMed ID: 16053078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimony migration trends from a small arms firing range compared to lead, copper, and zinc.
    Martin WA; Lee LS; Schwab P
    Sci Total Environ; 2013 Oct; 463-464():222-8. PubMed ID: 23810861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimony sinks in the weathering crust of bullets from Swiss shooting ranges.
    Ackermann S; Gieré R; Newville M; Majzlan J
    Sci Total Environ; 2009 Feb; 407(5):1669-82. PubMed ID: 19117594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of soil amendments to immobilize antimony and lead in moderately contaminated shooting range soils.
    Tandy S; Meier N; Schulin R
    J Hazard Mater; 2017 Feb; 324(Pt B):617-625. PubMed ID: 27863798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of phosphate application on the mobility of antimony in firing range soils.
    Griggs CS; Martin WA; Larson SL; O'Connnor G; Fabian G; Zynda G; Mackie D
    Sci Total Environ; 2011 May; 409(12):2397-403. PubMed ID: 21440928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions.
    Ahmad M; Lee SS; Lim JE; Lee SE; Cho JS; Moon DH; Hashimoto Y; Ok YS
    Chemosphere; 2014 Jan; 95():433-41. PubMed ID: 24183621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of carbon nanotube and biochar on bioavailability of Pb, Cu and Sb in multi-metal contaminated soil.
    Vithanage M; Herath I; Almaroai YA; Rajapaksha AU; Huang L; Sung JK; Lee SS; Ok YS
    Environ Geochem Health; 2017 Dec; 39(6):1409-1420. PubMed ID: 28332174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of two best management practices on Pb weathering and leachability in shooting range soils.
    Liu R; Gress J; Gao J; Ma LQ
    Environ Monit Assess; 2013 Aug; 185(8):6477-84. PubMed ID: 23264058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lead transformation and distribution in the soils of shooting ranges in Florida, USA.
    Cao X; Ma LQ; Chen M; Hardison DW; Harris WG
    Sci Total Environ; 2003 May; 307(1-3):179-89. PubMed ID: 12711433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Release of antimony from contaminated soil induced by redox changes.
    Hockmann K; Lenz M; Tandy S; Nachtegaal M; Janousch M; Schulin R
    J Hazard Mater; 2014 Jun; 275():215-21. PubMed ID: 24862348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant uptake and availability of antimony, lead, copper and zinc in oxic and reduced shooting range soil.
    Hockmann K; Tandy S; Studer B; Evangelou MWH; Schulin R
    Environ Pollut; 2018 Jul; 238():255-262. PubMed ID: 29567447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speciation and bioavailability of selenium and antimony in non-flooded and wetland soils: a review.
    Nakamaru YM; Altansuvd J
    Chemosphere; 2014 Sep; 111():366-71. PubMed ID: 24997941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.