These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 30580399)

  • 41. EIS-Based Biosensors in Foodborne Pathogen Detection with a Special Focus on Listeria monocytogenes.
    Poltronieri P; Primiceri E; Radhakrishnan R
    Methods Mol Biol; 2019; 1918():87-101. PubMed ID: 30580401
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microfluidic-Based Approaches for Foodborne Pathogen Detection.
    Zhao X; Li M; Liu Y
    Microorganisms; 2019 Sep; 7(10):. PubMed ID: 31547520
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fabrication and Evaluation of Microfluidic Immunoassay Devices with Antibody-Immobilized Microbeads Retained in Porous Hydrogel Micropillars.
    Kasama T; Kaji N; Tokeshi M; Baba Y
    Methods Mol Biol; 2017; 1547():49-56. PubMed ID: 28044286
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rapid detection, characterization, and enumeration of foodborne pathogens.
    Hoorfar J
    APMIS Suppl; 2011 Nov; (133):1-24. PubMed ID: 22250747
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics.
    Foudeh AM; Fatanat Didar T; Veres T; Tabrizian M
    Lab Chip; 2012 Sep; 12(18):3249-66. PubMed ID: 22859057
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Use of Multiplex Real-Time PCR for the Simultaneous Detection of Foodborne Bacterial Pathogens.
    Garrido-Maestu A; Tomás Fornés D; Prado Rodríguez M
    Methods Mol Biol; 2019; 1918():35-45. PubMed ID: 30580397
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Counting bacteria on a microfluidic chip.
    Song Y; Zhang H; Chon CH; Chen S; Pan X; Li D
    Anal Chim Acta; 2010 Nov; 681(1-2):82-6. PubMed ID: 21035606
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Advanced molecular diagnostic techniques for detection of food-borne pathogens: Current applications and future challenges.
    Umesha S; Manukumar HM
    Crit Rev Food Sci Nutr; 2018 Jan; 58(1):84-104. PubMed ID: 26745757
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Development of a xMAP liquid chip assay for the rapid identification of 7 common foodborne pathogens and its application].
    Lü D; Shi X; Chen M; Wu P; He L; Li Y; Lin Y; Qiu Y; Hu Q
    Wei Sheng Yan Jiu; 2012 Jan; 41(1):96-101. PubMed ID: 22443066
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Commercially Available Rapid Methods for Detection of Selected Food-borne Pathogens.
    Valderrama WB; Dudley EG; Doores S; Cutter CN
    Crit Rev Food Sci Nutr; 2016 Jul; 56(9):1519-31. PubMed ID: 25749054
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Capillary-driven microfluidic paper-based analytical devices for lab on a chip screening of explosive residues in soil.
    Ueland M; Blanes L; Taudte RV; Stuart BH; Cole N; Willis P; Roux C; Doble P
    J Chromatogr A; 2016 Mar; 1436():28-33. PubMed ID: 26850317
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Loop-mediated isothermal amplification (LAMP): A novel rapid detection platform for pathogens.
    Li Y; Fan P; Zhou S; Zhang L
    Microb Pathog; 2017 Jun; 107():54-61. PubMed ID: 28323152
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A novel, low-cost microfluidic device with an integrated filter for rapid, ultrasensitive, and high-throughput bioburden detection.
    Hasan MS; Sundberg C; Tolosa M; Andar A; Ge X; Kostov Y; Rao G
    Sci Rep; 2023 Jul; 13(1):12084. PubMed ID: 37495652
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development of a gold nanoparticle-based universal oligonucleotide microarray for multiplex and low-cost detection of foodborne pathogens.
    Wang X; Ying S; Wei X; Yuan J
    Int J Food Microbiol; 2017 Jul; 253():66-74. PubMed ID: 28505584
    [TBL] [Abstract][Full Text] [Related]  

  • 55. FISHing for bacteria in food--a promising tool for the reliable detection of pathogenic bacteria?
    Rohde A; Hammerl JA; Appel B; Dieckmann R; Al Dahouk S
    Food Microbiol; 2015 Apr; 46():395-407. PubMed ID: 25475309
    [TBL] [Abstract][Full Text] [Related]  

  • 56. From hazard analysis to risk control using rapid methods in microbiology: A practical approach for the food industry.
    Ripolles-Avila C; Martínez-Garcia M; Capellas M; Yuste J; Fung DYC; Rodríguez-Jerez JJ
    Compr Rev Food Sci Food Saf; 2020 Jul; 19(4):1877-1907. PubMed ID: 33337076
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Simple Screening of Listeria monocytogenes Based on a Fluorescence Assay via a Laminated Lab-On-Paper Chip.
    Pisamayarom K; Suriyasomboon A; Chaumpluk P
    Biosensors (Basel); 2017 Nov; 7(4):. PubMed ID: 29182562
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genomic Epidemiology: Whole-Genome-Sequencing-Powered Surveillance and Outbreak Investigation of Foodborne Bacterial Pathogens.
    Deng X; den Bakker HC; Hendriksen RS
    Annu Rev Food Sci Technol; 2016; 7():353-74. PubMed ID: 26772415
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples.
    Vaisocherová-Lísalová H; Víšová I; Ermini ML; Špringer T; Song XC; Mrázek J; Lamačová J; Scott Lynn N; Šedivák P; Homola J
    Biosens Bioelectron; 2016 Jun; 80():84-90. PubMed ID: 26807521
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Application of lectin-based biosensor technology in the detection of foodborne pathogenic bacteria: a review.
    Mi F; Guan M; Hu C; Peng F; Sun S; Wang X
    Analyst; 2021 Jan; 146(2):429-443. PubMed ID: 33231246
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.