BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 30580517)

  • 1. Structural Features of Alkaline Dioxane Lignin and Residual Lignin from Eucalyptus grandis × E. urophylla.
    Chen WJ; Zhao BC; Cao XF; Yuan TQ; Shi Q; Wang SF; Sun RC
    J Agric Food Chem; 2019 Jan; 67(3):968-974. PubMed ID: 30580517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of lignins from Eucalyptus tereticornis (12ABL).
    Zhang A; Lu F; Liu C; Sun RC
    J Agric Food Chem; 2010 Nov; 58(21):11287-93. PubMed ID: 20954709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural variation of eucalyptus lignin in a combination of hydrothermal and alkali treatments.
    Sun SN; Li HY; Cao XF; Xu F; Sun RC
    Bioresour Technol; 2015 Jan; 176():296-9. PubMed ID: 25435069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural characterization of lignin in heartwood, sapwood, and bark of eucalyptus.
    Xiao MZ; Chen WJ; Hong S; Pang B; Cao XF; Wang YY; Yuan TQ; Sun RC
    Int J Biol Macromol; 2019 Oct; 138():519-527. PubMed ID: 31348970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of alkaline preswelling on the structure of lignins from Eucalyptus.
    Chen WJ; Yang S; Zhang Y; Wang YY; Yuan TQ; Sun RC
    Sci Rep; 2017 May; 7():45752. PubMed ID: 28462935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Demonstration of laccase-based removal of lignin from wood and non-wood plant feedstocks.
    Gutiérrez A; Rencoret J; Cadena EM; Rico A; Barth D; del Río JC; Martínez AT
    Bioresour Technol; 2012 Sep; 119():114-22. PubMed ID: 22728191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective precipitation and characterization of lignin-carbohydrate complexes (LCCs) from Eucalyptus.
    Zhao BC; Xu JD; Chen BY; Cao XF; Yuan TQ; Wang SF; Charlton A; Sun RC
    Planta; 2018 May; 247(5):1077-1087. PubMed ID: 29350280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated hot-compressed water and laccase-mediator treatments of Eucalyptus grandis fibers: structural changes of fiber and lignin.
    Wu JQ; Wen JL; Yuan TQ; Sun RC
    J Agric Food Chem; 2015 Feb; 63(6):1763-72. PubMed ID: 25639522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revealing the structure and distribution changes of Eucalyptus lignin during the hydrothermal and alkaline pretreatments.
    Wang C; Li H; Li M; Bian J; Sun R
    Sci Rep; 2017 Apr; 7(1):593. PubMed ID: 28377625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative characterization of a hardwood milled wood lignin by nuclear magnetic resonance spectroscopy.
    Capanema EA; Balakshin MY; Kadla JF
    J Agric Food Chem; 2005 Dec; 53(25):9639-49. PubMed ID: 16332110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and structural characterization of the milled wood lignin, dioxane lignin, and cellulolytic lignin preparations from brewer's spent grain.
    Rencoret J; Prinsen P; Gutiérrez A; Martínez ÁT; Del Río JC
    J Agric Food Chem; 2015 Jan; 63(2):603-13. PubMed ID: 25520237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lignin modification during Eucalyptus globulus kraft pulping followed by totally chlorine-free bleaching: a two-dimensional nuclear magnetic resonance, Fourier transform infrared, and pyrolysis-gas chromatography/mass spectrometry study.
    Ibarra D; Chávez MI; Rencoret J; Del Río JC; Gutiérrez A; Romero J; Camarero S; Martínez MJ; Jiménez-Barbero J; Martínez AT
    J Agric Food Chem; 2007 May; 55(9):3477-90. PubMed ID: 17407317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative evaluation of three lignin isolation protocols for various wood species.
    Guerra A; Filpponen I; Lucia LA; Argyropoulos DS
    J Agric Food Chem; 2006 Dec; 54(26):9696-705. PubMed ID: 17177489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of organosolv pretreatment on the structural characteristics of lignin polymers and follow-up enzymatic hydrolysis of the substrates from Eucalyptus wood.
    Wang B; Shen XJ; Wen JL; Xiao L; Sun RC
    Int J Biol Macromol; 2017 Apr; 97():447-459. PubMed ID: 28099889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Condensed lignin structures and re-localization achieved at high severities in autohydrolysis of Eucalyptus globulus wood and their relationship with cellulose accessibility.
    Araya F; Troncoso E; Mendonça RT; Freer J
    Biotechnol Bioeng; 2015 Sep; 112(9):1783-91. PubMed ID: 25851426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homolytic and Heterolytic Cleavage of β-Ether Linkages in Hardwood Lignin by Steam Explosion.
    Obame SN; Ziegler-Devin I; Safou-Tchima R; Brosse N
    J Agric Food Chem; 2019 May; 67(21):5989-5996. PubMed ID: 31062970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of residual lignin after SO(2)-catalyzed steam explosion and enzymatic hydrolysis of Eucalyptus viminalis wood chips.
    Ramos LP; Mathias AL; Silva FT; Cotrim AR; Ferraz AL; Chen CL
    J Agric Food Chem; 1999 Jun; 47(6):2295-302. PubMed ID: 10794625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discrepancy of lignin dissolution from eucalyptus during formic acid fractionation.
    Li XY; Li MF
    Int J Biol Macromol; 2020 Dec; 164():4662-4670. PubMed ID: 32941904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification, structural characterization, and modification of organosolv wheat straw lignin.
    Mbotchak L; Le Morvan C; Duong KL; Rousseau B; Tessier M; Fradet A
    J Agric Food Chem; 2015 Jun; 63(21):5178-88. PubMed ID: 25961961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Native lignin structure of Miscanthus x giganteus and its changes during acetic and formic acid fractionation.
    Villaverde JJ; Li J; Ek M; Ligero P; de Vega A
    J Agric Food Chem; 2009 Jul; 57(14):6262-70. PubMed ID: 19552425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.