These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1204 related articles for article (PubMed ID: 30580963)

  • 21. Identification of Open Chromatin Regions in Plant Genomes Using ATAC-Seq.
    Bajic M; Maher KA; Deal RB
    Methods Mol Biol; 2018; 1675():183-201. PubMed ID: 29052193
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Profiling of chromatin accessibility identifies transcription factor binding sites across the genome of Aspergillus species.
    Huang L; Li X; Dong L; Wang B; Pan L
    BMC Biol; 2021 Sep; 19(1):189. PubMed ID: 34488759
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The landscape of accessible chromatin in mammalian preimplantation embryos.
    Wu J; Huang B; Chen H; Yin Q; Liu Y; Xiang Y; Zhang B; Liu B; Wang Q; Xia W; Li W; Li Y; Ma J; Peng X; Zheng H; Ming J; Zhang W; Zhang J; Tian G; Xu F; Chang Z; Na J; Yang X; Xie W
    Nature; 2016 Jun; 534(7609):652-7. PubMed ID: 27309802
    [TBL] [Abstract][Full Text] [Related]  

  • 24. scifi-ATAC-seq: massive-scale single-cell chromatin accessibility sequencing using combinatorial fluidic indexing.
    Zhang X; Marand AP; Yan H; Schmitz RJ
    Genome Biol; 2024 Apr; 25(1):90. PubMed ID: 38589969
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solid-phase capture and profiling of open chromatin by spatial ATAC.
    Llorens-Bobadilla E; Zamboni M; Marklund M; Bhalla N; Chen X; Hartman J; Frisén J; Ståhl PL
    Nat Biotechnol; 2023 Aug; 41(8):1085-1088. PubMed ID: 36604544
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Profiling the Epigenetic Landscape of the Spermatogonial Stem Cell: Part 2-Computational Analysis of Epigenomics Data.
    Cheng K; McCarrey JR
    Methods Mol Biol; 2023; 2656():109-125. PubMed ID: 37249868
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ATAC-see reveals the accessible genome by transposase-mediated imaging and sequencing.
    Chen X; Shen Y; Draper W; Buenrostro JD; Litzenburger U; Cho SW; Satpathy AT; Carter AC; Ghosh RP; East-Seletsky A; Doudna JA; Greenleaf WJ; Liphardt JT; Chang HY
    Nat Methods; 2016 Dec; 13(12):1013-1020. PubMed ID: 27749837
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using ATAC-seq and RNA-seq to increase resolution in GRN connectivity.
    Lowe EK; Cuomo C; Voronov D; Arnone MI
    Methods Cell Biol; 2019; 151():115-126. PubMed ID: 30948003
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ATAC-Seq Analysis of Accessible Chromatin: From Experimental Steps to Data Analysis.
    Tatara M; Ikeda T; Namekawa SH; Maezawa S
    Methods Mol Biol; 2023; 2577():65-81. PubMed ID: 36173566
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous Tagmentation-Based Detection of ChIP/ATAC Signal with Bisulfite Sequencing.
    Lhoumaud P; Skok J
    Methods Mol Biol; 2021; 2351():337-352. PubMed ID: 34382199
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulatory chromatin landscape in
    Tannenbaum M; Sarusi-Portuguez A; Krispil R; Schwartz M; Loza O; Benichou JIC; Mosquna A; Hakim O
    Plant Methods; 2018; 14():113. PubMed ID: 30598689
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcript-indexed ATAC-seq for precision immune profiling.
    Satpathy AT; Saligrama N; Buenrostro JD; Wei Y; Wu B; Rubin AJ; Granja JM; Lareau CA; Li R; Qi Y; Parker KR; Mumbach MR; Serratelli WS; Gennert DG; Schep AN; Corces MR; Khodadoust MS; Kim YH; Khavari PA; Greenleaf WJ; Davis MM; Chang HY
    Nat Med; 2018 May; 24(5):580-590. PubMed ID: 29686426
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimization of ATAC-seq in wheat seedling roots using INTACT-isolated nuclei.
    Debernardi JM; Burguener G; Bubb K; Liu Q; Queitsch C; Dubcovsky J
    BMC Plant Biol; 2023 May; 23(1):270. PubMed ID: 37211599
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ATAC-Seq for Assaying Chromatin Accessibility Protocol Using Echinoderm Embryos.
    Magri MS; Voronov D; Ranđelović J; Cuomo C; Gómez-Skarmeta JL; Arnone MI
    Methods Mol Biol; 2021; 2219():253-265. PubMed ID: 33074546
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DeNOPA: decoding nucleosome positions sensitively with sparse ATAC-seq data.
    Xu B; Li X; Gao X; Jia Y; Liu J; Li F; Zhang Z
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34875002
    [TBL] [Abstract][Full Text] [Related]  

  • 36. methyl-ATAC-seq measures DNA methylation at accessible chromatin.
    Spektor R; Tippens ND; Mimoso CA; Soloway PD
    Genome Res; 2019 Jun; 29(6):969-977. PubMed ID: 31160376
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A rapid and robust method for single cell chromatin accessibility profiling.
    Chen X; Miragaia RJ; Natarajan KN; Teichmann SA
    Nat Commun; 2018 Dec; 9(1):5345. PubMed ID: 30559361
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ATAC-Seq Reveals the Landscape of Open Chromatin and 
    Zhang Z; Lin L; Chen H; Ye W; Dong S; Zheng X; Wang Y
    Mol Plant Microbe Interact; 2022 Apr; 35(4):301-310. PubMed ID: 35037783
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome.
    Klann TS; Black JB; Chellappan M; Safi A; Song L; Hilton IB; Crawford GE; Reddy TE; Gersbach CA
    Nat Biotechnol; 2017 Jun; 35(6):561-568. PubMed ID: 28369033
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome-Scale Analysis of Cell-Specific Regulatory Codes Using Nuclear Enzymes.
    Baek S; Sung MH
    Methods Mol Biol; 2016; 1418():225-40. PubMed ID: 27008018
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 61.