BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 30581017)

  • 1. Neuron-Glia Interactions Increase Neuronal Phenotypes in Tuberous Sclerosis Complex Patient iPSC-Derived Models.
    Nadadhur AG; Alsaqati M; Gasparotto L; Cornelissen-Steijger P; van Hugte E; Dooves S; Harwood AJ; Heine VM
    Stem Cell Reports; 2019 Jan; 12(1):42-56. PubMed ID: 30581017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biallelic Mutations in
    Winden KD; Sundberg M; Yang C; Wafa SMA; Dwyer S; Chen PF; Buttermore ED; Sahin M
    J Neurosci; 2019 Nov; 39(47):9294-9305. PubMed ID: 31591157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural progenitors derived from Tuberous Sclerosis Complex patients exhibit attenuated PI3K/AKT signaling and delayed neuronal differentiation.
    Zucco AJ; Pozzo VD; Afinogenova A; Hart RP; Devinsky O; D'Arcangelo G
    Mol Cell Neurosci; 2018 Oct; 92():149-163. PubMed ID: 30144504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High glucose concentrations mask cellular phenotypes in a stem cell model of tuberous sclerosis complex.
    Rocktäschel P; Sen A; Cader MZ
    Epilepsy Behav; 2019 Dec; 101(Pt B):106581. PubMed ID: 31761686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TSC patient-derived isogenic neural progenitor cells reveal altered early neurodevelopmental phenotypes and rapamycin-induced MNK-eIF4E signaling.
    Martin P; Wagh V; Reis SA; Erdin S; Beauchamp RL; Shaikh G; Talkowski M; Thiele E; Sheridan SD; Haggarty SJ; Ramesh V
    Mol Autism; 2020; 11(1):2. PubMed ID: 31921404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuberous Sclerosis Complex (TSC) Inactivation Increases Neuronal Network Activity by Enhancing Ca
    Hisatsune C; Shimada T; Miyamoto A; Lee A; Yamagata K
    J Neurosci; 2021 Sep; 41(39):8134-8149. PubMed ID: 34417327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuronal CTGF/CCN2 negatively regulates myelination in a mouse model of tuberous sclerosis complex.
    Ercan E; Han JM; Di Nardo A; Winden K; Han MJ; Hoyo L; Saffari A; Leask A; Geschwind DH; Sahin M
    J Exp Med; 2017 Mar; 214(3):681-697. PubMed ID: 28183733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuron-Glia Interactions in Tuberous Sclerosis Complex Affect the Synaptic Balance in 2D and Organoid Cultures.
    Dooves S; van Velthoven AJH; Suciati LG; Heine VM
    Cells; 2021 Jan; 10(1):. PubMed ID: 33445520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacological intervention to restore connectivity deficits of neuronal networks derived from ASD patient iPSC with a TSC2 mutation.
    Alsaqati M; Heine VM; Harwood AJ
    Mol Autism; 2020 Oct; 11(1):80. PubMed ID: 33076974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling tuberous sclerosis complex with human induced pluripotent stem cells.
    Niu W; Siciliano B; Wen Z
    World J Pediatr; 2024 Mar; 20(3):208-218. PubMed ID: 35759110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of glia in epilepsy, intellectual disability, and other neurodevelopmental disorders in tuberous sclerosis complex.
    Wong M
    J Neurodev Disord; 2019 Dec; 11(1):30. PubMed ID: 31838997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-culture of Human Stem Cell Derived Neurons and Oligodendrocyte Progenitor Cells.
    Dooves S; Nadadhur AG; Gasparotto L; Heine VM
    Bio Protoc; 2019 Sep; 9(17):e3350. PubMed ID: 33654852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex Neurological Phenotype in Mutant Mice Lacking Tsc2 in Excitatory Neurons of the Developing Forebrain(123).
    Crowell B; Lee GH; Nikolaeva I; Dal Pozzo V; D'Arcangelo G
    eNeuro; 2015; 2(6):. PubMed ID: 26693177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myelin Pathology Beyond White Matter in Tuberous Sclerosis Complex (TSC) Cortical Tubers.
    Mühlebner A; van Scheppingen J; de Neef A; Bongaarts A; Zimmer TS; Mills JD; Jansen FE; Spliet WGM; Krsek P; Zamecnik J; Coras R; Blumcke I; Feucht M; Scholl T; Gruber VE; Hainfellner JA; Söylemezoğlu F; Kotulska K; Lagae L; Jansen AC; Kwiatkowski DJ; Jozwiak S; Curatolo P; Aronica E
    J Neuropathol Exp Neurol; 2020 Oct; 79(10):1054-1064. PubMed ID: 32954437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased degradation of FMRP contributes to neuronal hyperexcitability in tuberous sclerosis complex.
    Winden KD; Pham TT; Teaney NA; Ruiz J; Chen R; Chen C; Sahin M
    Cell Rep; 2023 Aug; 42(8):112838. PubMed ID: 37494191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aligned Brain Extracellular Matrix Promotes Differentiation and Myelination of Human-Induced Pluripotent Stem Cell-Derived Oligodendrocytes.
    Cho AN; Jin Y; Kim S; Kumar S; Shin H; Kang HC; Cho SW
    ACS Appl Mater Interfaces; 2019 May; 11(17):15344-15353. PubMed ID: 30974942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling Neurodevelopmental Deficits in Tuberous Sclerosis Complex with Stem Cell Derived Neural Precursors and Neurons.
    Sundberg M; Sahin M
    Adv Neurobiol; 2020; 25():1-31. PubMed ID: 32578142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of mTOR signalling in neurogenesis, insights from tuberous sclerosis complex.
    Tee AR; Sampson JR; Pal DK; Bateman JM
    Semin Cell Dev Biol; 2016 Apr; 52():12-20. PubMed ID: 26849906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of Tuberous Sclerosis Complex1 in Adult Oligodendrocyte Progenitor Cells Enhances Axon Remyelination and Increases Myelin Thickness after a Focal Demyelination.
    McLane LE; Bourne JN; Evangelou AV; Khandker L; Macklin WB; Wood TL
    J Neurosci; 2017 Aug; 37(31):7534-7546. PubMed ID: 28694334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuberous Sclerosis Complex as Disease Model for Investigating mTOR-Related Gliopathy During Epileptogenesis.
    Zimmer TS; Broekaart DWM; Gruber VE; van Vliet EA; Mühlebner A; Aronica E
    Front Neurol; 2020; 11():1028. PubMed ID: 33041976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.