BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30581117)

  • 21. Insights into leukemia-initiating cell frequency and self-renewal from a novel canine model of leukemia.
    Imren S; Zhang XB; Humphries RK; Kiem HP
    Exp Hematol; 2011 Jan; 39(1):124-32. PubMed ID: 20933571
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Establishment of a novel childhood acute myeloid leukaemia cell line, KOPM-88, containing partial tandem duplication of the MLL gene and an in vivo model for childhood acute myeloid leukaemia using NOD/SCID mice.
    Hayashi M; Kondoh K; Nakata Y; Kinoshita A; Mori T; Takahashi T; Sakamoto MI; Yamada T
    Br J Haematol; 2007 May; 137(3):221-32. PubMed ID: 17408461
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Roles of the bone marrow niche in hematopoiesis, leukemogenesis, and chemotherapy resistance in acute myeloid leukemia.
    Wang A; Zhong H
    Hematology; 2018 Dec; 23(10):729-739. PubMed ID: 29902132
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rac1 GTPase Promotes Interaction of Hematopoietic Stem/Progenitor Cell with Niche and Participates in Leukemia Initiation and Maintenance in Mouse.
    Chen S; Li H; Li S; Yu J; Wang M; Xing H; Tang K; Tian Z; Rao Q; Wang J
    Stem Cells; 2016 Jul; 34(7):1730-41. PubMed ID: 26946078
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Paradoxical effects of Auger electron-emitting (111)In-DTPA-NLS-CSL360 radioimmunoconjugates on hCD45(+) cells in the bone marrow and spleen of leukemia-engrafted NOD/SCID or NRG mice.
    Bergstrom D; Leyton JV; Zereshkian A; Chan C; Cai Z; Reilly RM
    Nucl Med Biol; 2016 Oct; 43(10):635-41. PubMed ID: 27497632
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia.
    Somervaille TC; Cleary ML
    Cancer Cell; 2006 Oct; 10(4):257-68. PubMed ID: 17045204
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Long-term observation reveals high-frequency engraftment of human acute myeloid leukemia in immunodeficient mice.
    Paczulla AM; Dirnhofer S; Konantz M; Medinger M; Salih HR; Rothfelder K; Tsakiris DA; Passweg JR; Lundberg P; Lengerke C
    Haematologica; 2017 May; 102(5):854-864. PubMed ID: 28183848
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Necdin modulates leukemia-initiating cell quiescence and chemotherapy response.
    Yao C; Kobayashi M; Chen S; Nabinger SC; Gao R; Liu SZ; Asai T; Liu Y
    Oncotarget; 2017 Oct; 8(50):87607-87622. PubMed ID: 29152105
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice.
    Tavor S; Petit I; Porozov S; Avigdor A; Dar A; Leider-Trejo L; Shemtov N; Deutsch V; Naparstek E; Nagler A; Lapidot T
    Cancer Res; 2004 Apr; 64(8):2817-24. PubMed ID: 15087398
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell.
    Bonnet D; Dick JE
    Nat Med; 1997 Jul; 3(7):730-7. PubMed ID: 9212098
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Age-related differences in the bone marrow stem cell niche generate specialized microenvironments for the distinct regulation of normal hematopoietic and leukemia stem cells.
    Lee GY; Jeong SY; Lee HR; Oh IH
    Sci Rep; 2019 Jan; 9(1):1007. PubMed ID: 30700727
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The mll-AF9 gene fusion in mice controls myeloproliferation and specifies acute myeloid leukaemogenesis.
    Dobson CL; Warren AJ; Pannell R; Forster A; Lavenir I; Corral J; Smith AJ; Rabbitts TH
    EMBO J; 1999 Jul; 18(13):3564-74. PubMed ID: 10393173
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Correlation between CXCR4 and homing or engraftment of acute myelogenous leukemia.
    Monaco G; Belmont JW; Konopleva M; Andreeff M; Tavor S; Petit I; Kollet O; Lapidot T
    Cancer Res; 2004 Sep; 64(18):6832 author reply 6832-3. PubMed ID: 15375005
    [No Abstract]   [Full Text] [Related]  

  • 34. Absence of IL-12Rβ2 in CD33(+)CD38(+) pediatric acute myeloid leukemia cells favours progression in NOD/SCID/IL2RγC-deficient mice.
    Ferretti E; Montagna D; Di Carlo E; Cocco C; Ribatti D; Ognio E; Sorrentino C; Lisini D; Bertaina A; Locatelli F; Pistoia V; Airoldi I
    Leukemia; 2012 Feb; 26(2):225-35. PubMed ID: 21844875
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targeting of CD44 eradicates human acute myeloid leukemic stem cells.
    Jin L; Hope KJ; Zhai Q; Smadja-Joffe F; Dick JE
    Nat Med; 2006 Oct; 12(10):1167-74. PubMed ID: 16998484
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural maintenance of chromosomes 4 is required for leukemia stem cell maintenance in MLL-AF9 induced acute myeloid leukemia.
    Peng L; Tang Y; Zhang Y; Guo S; Peng L; Ye L; Wang Y; Jiang Y
    Leuk Lymphoma; 2018 Oct; 59(10):2423-2430. PubMed ID: 29043883
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role and clinical implications of the endosteal niche and osteoblasts in regulating leukemia.
    Azizidoost S; Vijay V; Cogle CR; Khodadi E; Saki N
    Clin Transl Oncol; 2017 Sep; 19(9):1059-1066. PubMed ID: 28281084
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vivo targeting of leukemia stem cells by directing parthenolide-loaded nanoparticles to the bone marrow niche.
    Zong H; Sen S; Zhang G; Mu C; Albayati ZF; Gorenstein DG; Liu X; Ferrari M; Crooks PA; Roboz GJ; Shen H; Guzman ML
    Leukemia; 2016 Jul; 30(7):1582-6. PubMed ID: 26669973
    [No Abstract]   [Full Text] [Related]  

  • 39. Inhibition of LIN28B impairs leukemia cell growth and metabolism in acute myeloid leukemia.
    Zhou J; Bi C; Ching YQ; Chooi JY; Lu X; Quah JY; Toh SH; Chan ZL; Tan TZ; Chong PS; Chng WJ
    J Hematol Oncol; 2017 Jul; 10(1):138. PubMed ID: 28693523
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Induction of a Timed Metabolic Collapse to Overcome Cancer Chemoresistance.
    van Gastel N; Spinelli JB; Sharda A; Schajnovitz A; Baryawno N; Rhee C; Oki T; Grace E; Soled HJ; Milosevic J; Sykes DB; Hsu PP; Vander Heiden MG; Vidoudez C; Trauger SA; Haigis MC; Scadden DT
    Cell Metab; 2020 Sep; 32(3):391-403.e6. PubMed ID: 32763164
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.