BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 3058118)

  • 1. Identification of the aspartic proteinases from human erythrocyte membranes and gastric mucosa (slow-moving proteinase) as catalytically equivalent to cathepsin E.
    Jupp RA; Richards AD; Kay J; Dunn BM; Wyckoff JB; Samloff IM; Yamamoto K
    Biochem J; 1988 Sep; 254(3):895-8. PubMed ID: 3058118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative studies of two types of acid proteases from rat gastric mucosa and spleen.
    Muto N; Yamamoto M; Tani S
    J Biochem; 1987 May; 101(5):1069-75. PubMed ID: 3115966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An aspartic proteinase from human erythrocytes is immunochemically indistinguishable from a non-pepsin, electrophoretically slow moving proteinase from gastric mucosa.
    Tarasova NI; Szecsi PB; Foltmann B
    Biochim Biophys Acta; 1986 Jan; 880(1):96-100. PubMed ID: 3510671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical and immunochemical similarity between erythrocyte membrane aspartic proteinase and cathepsin E.
    Yamamoto K; Ueno E; Uemura H; Kato Y
    Biochem Biophys Res Commun; 1987 Oct; 148(1):267-72. PubMed ID: 3314869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slow moving proteinase. Isolation, characterization, and immunohistochemical localization in gastric mucosa.
    Samloff IM; Taggart RT; Shiraishi T; Branch T; Reid WA; Heath R; Lewis RW; Valler MJ; Kay J
    Gastroenterology; 1987 Jul; 93(1):77-84. PubMed ID: 3556306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilisation of cathepsin E by ATP.
    Thomas DJ; Richards AD; Jupp RA; Ueno E; Yamamoto K; Samloff IM; Dunn BM; Kay J
    FEBS Lett; 1989 Jan; 243(2):145-8. PubMed ID: 2917642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and biochemical characterization of procathepsin E from human erythrocyte membranes.
    Takeda-Ezaki M; Yamamoto K
    Arch Biochem Biophys; 1993 Aug; 304(2):352-8. PubMed ID: 8346912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human erythrocyte membrane acid proteinase (EMAP): sidedness and relation to cathepsin D.
    Yamamoto K; Takeda M; Yamamoto H; Tatsumi M; Kato Y
    J Biochem; 1985 Mar; 97(3):821-30. PubMed ID: 3926757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification and characterization of cathepsin E type acid proteinase from gastric mucosa of bullfrog, Rana catesbeiana.
    Inokuchi T; Kobayashi K; Horiuchi S
    J Biochem; 1994 Jan; 115(1):76-81. PubMed ID: 8188640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristic distribution of cathepsin E which immunologically cross-reacts with the 86-kDa acid proteinase from rat gastric mucosa.
    Muto N; Yamamoto M; Tani S; Yonezawa S
    J Biochem; 1988 Apr; 103(4):629-32. PubMed ID: 3049564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aspartic proteinases in gastric mucosa of the rat: absence of pepsinogen I, genetic polymorphism of pepsinogen II, and presence of slow-moving proteinase.
    Lai KH; Wyckoff JB; Samloff IM
    Gastroenterology; 1988 Aug; 95(2):295-301. PubMed ID: 3292334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunochemical similarity between a gastric mucosa non-pepsin acid proteinase and neutrophil cathepsin E of the rat.
    Yonezawa S; Tanaka T; Muto N; Tani S
    Biochem Biophys Res Commun; 1987 May; 144(3):1251-6. PubMed ID: 3579957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and properties of a cathepsin D-like acid proteinase from rat gastric mucosa.
    Muto N; Arai KM; Tani S
    Biochim Biophys Acta; 1983 May; 745(1):61-9. PubMed ID: 6342679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and partial characterization of three acidic proteinases in erythrocyte membranes.
    Pontremoli S; Salamino F; Sparatore B; Melloni E; Morelli A; Benatti U; De Flora A
    Biochem J; 1979 Sep; 181(3):559-68. PubMed ID: 42385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional aspects of cathepsin E: is it an embryonic or fetal type of aspartic proteinase?
    Yonezawa S; Ichinose M; Tsukada S; Miki K; Kageyama T
    Adv Exp Med Biol; 1995; 362():345-8. PubMed ID: 8540341
    [No Abstract]   [Full Text] [Related]  

  • 16. Age-related changes in activities and localizations of cathepsins D, E, B, and L in the rat brain tissues.
    Nakanishi H; Tominaga K; Amano T; Hirotsu I; Inoue T; Yamamoto K
    Exp Neurol; 1994 Mar; 126(1):119-28. PubMed ID: 8157122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Further studies on rat cathepsin E: subcellular localization and existence of the active subunit form.
    Yonezawa S; Fujii K; Maejima Y; Tamoto K; Mori Y; Muto N
    Arch Biochem Biophys; 1988 Nov; 267(1):176-83. PubMed ID: 3058036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A general framework of cysteine-proteinase mechanism deduced from studies on enzymes with structurally different analogous catalytic-site residues Asp-158 and -161 (papain and actinidin), Gly-196 (cathepsin B) and Asn-165 (cathepsin H). Kinetic studies up to pH 8 of the hydrolysis of N-alpha-benzyloxycarbonyl-L-arginyl-L-arginine 2-naphthylamide catalysed by cathepsin B and of L-arginine 2-naphthylamide catalysed by cathepsin H.
    Willenbrock F; Brocklehurst K
    Biochem J; 1985 Apr; 227(2):521-8. PubMed ID: 3890831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of P-57, a serine proteinase, from human erythrocyte membranes, which cleaves both chains of human third component (C3) of complement.
    Charriaut-Marlangue C; Barel M; Frade R
    Biochem Biophys Res Commun; 1986 Nov; 140(3):1113-20. PubMed ID: 3535796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the binding preferences/specificity in the active site of human cathepsin E.
    Rao-Naik C; Guruprasad K; Batley B; Rapundalo S; Hill J; Blundell T; Kay J; Dunn BM
    Proteins; 1995 Jun; 22(2):168-81. PubMed ID: 7567964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.