These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 30581191)

  • 1. A CRISPR focus on attitudes and beliefs toward somatic genome editing from stakeholders within the sickle cell disease community.
    Persaud A; Desine S; Blizinsky K; Bonham VL
    Genet Med; 2019 Aug; 21(8):1726-1734. PubMed ID: 30581191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Meaning of Informed Consent: Genome Editing Clinical Trials for Sickle Cell Disease.
    Desine S; Hollister BM; Abdallah KE; Persaud A; Hull SC; Bonham VL
    AJOB Empir Bioeth; 2020; 11(4):195-207. PubMed ID: 33044907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perspectives of Sickle Cell Disease Stakeholders on Heritable Genome Editing.
    Hollister BM; Gatter MC; Abdallah KE; Armsby AJ; Buscetta AJ; Byeon YJJ; Cooper KE; Desine S; Persaud A; Ormond KE; Bonham VL
    CRISPR J; 2019 Dec; 2(6):441-449. PubMed ID: 31742431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular function reinstitution of offspring red blood cells cloned from the sickle cell disease patient blood post CRISPR genome editing.
    Wen J; Tao W; Hao S; Zu Y
    J Hematol Oncol; 2017 Jun; 10(1):119. PubMed ID: 28610635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9 gene editing for curing sickle cell disease.
    Park SH; Bao G
    Transfus Apher Sci; 2021 Feb; 60(1):103060. PubMed ID: 33455878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR in personalized medicine: Industry perspectives in gene editing.
    Hong A
    Semin Perinatol; 2018 Dec; 42(8):501-507. PubMed ID: 30376985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cas9 for Sickle Cell Disease: Applications, Future Possibilities, and Challenges.
    Demirci S; Leonard A; Haro-Mora JJ; Uchida N; Tisdale JF
    Adv Exp Med Biol; 2019; 1144():37-52. PubMed ID: 30715679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells.
    DeWitt MA; Magis W; Bray NL; Wang T; Berman JR; Urbinati F; Heo SJ; Mitros T; Muñoz DP; Boffelli D; Kohn DB; Walters MC; Carroll D; Martin DI; Corn JE
    Sci Transl Med; 2016 Oct; 8(360):360ra134. PubMed ID: 27733558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Treatment of heritable diseases using CRISPR: Hopes, fears, and reality.
    Kofler N; Kraschel KL
    Semin Perinatol; 2018 Dec; 42(8):515-521. PubMed ID: 30420296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted Gene Manipulation in Plants Using the CRISPR/Cas Technology.
    Zhang D; Li Z; Li JF
    J Genet Genomics; 2016 May; 43(5):251-62. PubMed ID: 27165865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Genome editing in plants directed by CRISPR/Cas ribonucleoprotein complexes].
    Li X; Shi W; Geng LZ; Xu JP
    Yi Chuan; 2020 Jun; 42(6):556-564. PubMed ID: 32694114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A justice-based argument for including sickle cell disease in CRISPR/Cas9 clinical research.
    Baffoe-Bonnie MS
    Bioethics; 2019 Jul; 33(6):661-668. PubMed ID: 31107563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Cas9 Hammer-and Sickle: A Challenge for Genome Editors.
    Urnov FD
    CRISPR J; 2021 Feb; 4(1):6-13. PubMed ID: 33616446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Key considerations in designing CRISPR/Cas9-carrying nanoparticles for therapeutic genome editing.
    Xu Y; Liu R; Dai Z
    Nanoscale; 2020 Oct; 12(41):21001-21014. PubMed ID: 33078813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome editing with the CRISPR-Cas system: an art, ethics and global regulatory perspective.
    Zhang D; Hussain A; Manghwar H; Xie K; Xie S; Zhao S; Larkin RM; Qing P; Jin S; Ding F
    Plant Biotechnol J; 2020 Aug; 18(8):1651-1669. PubMed ID: 32271968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas9-mediated genome editing: From basic research to translational medicine.
    Jacinto FV; Link W; Ferreira BI
    J Cell Mol Med; 2020 Apr; 24(7):3766-3778. PubMed ID: 32096600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene therapy for sickle cell disease.
    The Lancet Haematology
    Lancet Haematol; 2016 Oct; 3(10):e446. PubMed ID: 27692301
    [No Abstract]   [Full Text] [Related]  

  • 18. A Universal Approach to Correct Various HBB Gene Mutations in Human Stem Cells for Gene Therapy of Beta-Thalassemia and Sickle Cell Disease.
    Cai L; Bai H; Mahairaki V; Gao Y; He C; Wen Y; Jin YC; Wang Y; Pan RL; Qasba A; Ye Z; Cheng L
    Stem Cells Transl Med; 2018 Jan; 7(1):87-97. PubMed ID: 29164808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delivery of Tissue-Targeted Scalpels: Opportunities and Challenges for
    Wei T; Cheng Q; Farbiak L; Anderson DG; Langer R; Siegwart DJ
    ACS Nano; 2020 Aug; 14(8):9243-9262. PubMed ID: 32697075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly efficient editing of the β-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease.
    Park SH; Lee CM; Dever DP; Davis TH; Camarena J; Srifa W; Zhang Y; Paikari A; Chang AK; Porteus MH; Sheehan VA; Bao G
    Nucleic Acids Res; 2019 Sep; 47(15):7955-7972. PubMed ID: 31147717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.