These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30581656)

  • 1. A new phylogenetic analysis of Phytosauria (Archosauria: Pseudosuchia) with the application of continuous and geometric morphometric character coding.
    Jones AS; Butler RJ
    PeerJ; 2018; 6():e5901. PubMed ID: 30581656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The phylogenetic relationships of basal archosauromorphs, with an emphasis on the systematics of proterosuchian archosauriforms.
    Ezcurra MD
    PeerJ; 2016; 4():e1778. PubMed ID: 27162705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationships of the Euparkeriidae and the rise of Archosauria.
    Sookias RB
    R Soc Open Sci; 2016 Mar; 3(3):150674. PubMed ID: 27069658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A late-surviving phytosaur from the northern Atlantic rift reveals climate constraints on Triassic reptile biogeography.
    Brownstein CD
    BMC Ecol Evol; 2023 Jul; 23(1):33. PubMed ID: 37460985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural and endocranial anatomy of Triassic phytosaurian reptiles and convergence with fossil and modern crocodylians.
    Lautenschlager S; Butler RJ
    PeerJ; 2016; 4():e2251. PubMed ID: 27547557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogenetic analysis of a new morphological dataset elucidates the evolutionary history of Crocodylia and resolves the long-standing gharial problem.
    Rio JP; Mannion PD
    PeerJ; 2021; 9():e12094. PubMed ID: 34567843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Archosauriform endocranial morphology and osteological evidence for semiaquatic sensory adaptations in phytosaurs.
    Lessner EJ; Stocker MR
    J Anat; 2017 Nov; 231(5):655-664. PubMed ID: 28776670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Testing pterosaur ingroup relationships through broader sampling of avemetatarsalian taxa and characters and a range of phylogenetic analysis techniques.
    Baron MG
    PeerJ; 2020; 8():e9604. PubMed ID: 33005485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometric morphometric character suites as phylogenetic data: extracting phylogenetic signal from gastropod shells.
    Smith UE; Hendricks JR
    Syst Biol; 2013 May; 62(3):366-85. PubMed ID: 23325808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revised phylogenetic analysis of the Aetosauria (Archosauria: Pseudosuchia); assessing the effects of incongruent morphological character sets.
    Parker WG
    PeerJ; 2016; 4():e1583. PubMed ID: 26819845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sacral anatomy of the phytosaur Smilosuchus adamanensis, with implications for pelvic girdle evolution among Archosauriformes.
    Griffin CT; Stefanic CM; Parker WG; Hungerbühler A; Stocker MR
    J Anat; 2017 Dec; 231(6):886-905. PubMed ID: 28836268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematics of putative euparkeriids (Diapsida: Archosauriformes) from the Triassic of China.
    Sookias RB; Sullivan C; Liu J; Butler RJ
    PeerJ; 2014; 2():e658. PubMed ID: 25469319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Short-Snouted, Middle Triassic Phytosaur and its Implications for the Morphological Evolution and Biogeography of Phytosauria.
    Stocker MR; Zhao LJ; Nesbitt SJ; Wu XC; Li C
    Sci Rep; 2017 Apr; 7():46028. PubMed ID: 28393843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion.
    Livezey BC; Zusi RL
    Zool J Linn Soc; 2007 Jan; 149(1):1-95. PubMed ID: 18784798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The systematic relationships and biogeographic history of ornithischian dinosaurs.
    Boyd CA
    PeerJ; 2015; 3():e1523. PubMed ID: 26713260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An expanded combined evidence approach to the Gavialis problem using geometric morphometric data from crocodylian braincases and Eustachian systems.
    Gold ME; Brochu CA; Norell MA
    PLoS One; 2014; 9(9):e105793. PubMed ID: 25198124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early tetrapod relationships revisited.
    Ruta M; Coates MI; Quicke DL
    Biol Rev Camb Philos Soc; 2003 May; 78(2):251-345. PubMed ID: 12803423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular systematics of the Hyaenidae: relationships of a relictual lineage resolved by a molecular supermatrix.
    Koepfli KP; Jenks SM; Eizirik E; Zahirpour T; Van Valkenburgh B; Wayne RK
    Mol Phylogenet Evol; 2006 Mar; 38(3):603-20. PubMed ID: 16503281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin and higher-level diversification of acariform mites - evidence from nuclear ribosomal genes, extensive taxon sampling, and secondary structure alignment.
    Pepato AR; Klimov PB
    BMC Evol Biol; 2015 Sep; 15():178. PubMed ID: 26330076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early cephalopod evolution clarified through Bayesian phylogenetic inference.
    Pohle A; Kröger B; Warnock RCM; King AH; Evans DH; Aubrechtová M; Cichowolski M; Fang X; Klug C
    BMC Biol; 2022 Apr; 20(1):88. PubMed ID: 35421982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.