BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 3058187)

  • 1. Modified cellulosic dialyzer membranes: an investigative tool in thrombogenicity studies.
    Mahiout A; Meinhold H; Kessel M; Vienken J; Baurmeister U
    ASAIO Trans; 1988; 34(3):878-81. PubMed ID: 3058187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dialyzer membranes: effect of surface area and chemical modification of cellulose on complement and platelet activation.
    Mahiout A; Meinhold H; Kessel M; Schulze H; Baurmeister U
    Artif Organs; 1987 Apr; 11(2):149-54. PubMed ID: 3036050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatibility of hemodialysis membranes: interrelations between plasma complement and cytokine levels.
    Varela MP; Kimmel PL; Phillips TM; Mishkin GJ; Lew SQ; Bosch JP
    Blood Purif; 2001; 19(4):370-9. PubMed ID: 11574733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compartmental distribution of complement activation products in artificial kidneys.
    Cheung AK; Chenoweth DE; Otsuka D; Henderson LW
    Kidney Int; 1986 Jul; 30(1):74-80. PubMed ID: 3489123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of dialyzer reprocessing with Renalin on serum beta-2-microglobulin and complement activation in hemodialysis patients.
    Westhuyzen J; Foreman K; Battistutta D; Saltissi D; Fleming SJ
    Am J Nephrol; 1992; 12(1-2):29-36. PubMed ID: 1415362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complement C3 and C5 degradation products during hemodialysis treatment: study of an index of membrane bioincompatibility.
    Freyria AM; Leitienne P; Veysseyre CN; Bringuier JP; Traeger J
    Int J Artif Organs; 1988 Mar; 11(2):111-8. PubMed ID: 3259552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical characterization of Dicea a new cellulose membrane for haemodialysis.
    Hoenich NA; Woffindin C; Cox PJ; Goldfinch M; Roberts SJ
    Clin Nephrol; 1997 Oct; 48(4):253-9. PubMed ID: 9352161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A modification of cellulose that facilitates the control of complement activation.
    Johnson RJ; Lelah MD; Sutliff TM; Boggs DR
    Blood Purif; 1990; 8(6):318-28. PubMed ID: 2151203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical evaluation of a new high-flux cellulose acetate membrane.
    Schaefer RM; Huber L; Gilge U; Bausewein K; Vienken J; Heidland A
    Int J Artif Organs; 1989 Feb; 12(2):85-90. PubMed ID: 2651325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complement activation in plasma exchange.
    Lancet; 1988 Dec 24-31; 2(8626-8627):1464-5. PubMed ID: 2904577
    [No Abstract]   [Full Text] [Related]  

  • 11. Plate, coil, and hollow-fiber cuprammonium cellulose dialyzers: discrepancy between incidence of anaphylactic reactions and degree of complement activation.
    Daugirdas JT; Potempa LD; Dinh N; Gandhi VC; Ivanovich PT; Ing TS
    Artif Organs; 1987 Apr; 11(2):140-3. PubMed ID: 3593043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complement activation and leucopenia on cellulosic haemodialyzers: influence of the membrane area and role of hydroxyl moieties.
    Goldman M; Lietaer N; Lambert P; Thayse C; Vanherweghem JL
    Life Support Syst; 1987; 5(4):317-22. PubMed ID: 3501504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anaphylatoxin formation during hemodialysis: effects of different dialyzer membranes.
    Chenoweth DE; Cheung AK; Henderson LW
    Kidney Int; 1983 Dec; 24(6):764-9. PubMed ID: 6609269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of dialyzer geometry on blood coagulation and biocompatibility.
    Lins LE; Boberg U; Jacobson SH; Kjellstrand C; Ljungberg B; Skröder R
    Clin Nephrol; 1993 Nov; 40(5):281-5. PubMed ID: 8281717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Comparison of biocompatibility of hemophane, cellulose diacetate and acrilonitile membranes in hemodialysis].
    Germin Petrović D
    Acta Med Croatica; 2004; 58(1):31-6. PubMed ID: 15125391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulose membranes--time for a change?
    Henderson LW; Chenoweth DE
    Contrib Nephrol; 1985; 44():112-26. PubMed ID: 3872769
    [No Abstract]   [Full Text] [Related]  

  • 17. Biocompatibility of hemodialysis membranes: evaluation in an ovine model.
    Burhop KE; Johnson RJ; Simpson J; Chenoweth DE; Borgia J
    J Lab Clin Med; 1993 Feb; 121(2):276-93. PubMed ID: 8433041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocompatibility and performance of a modified cellulosic and a synthetic high flux dialyzer. A randomized crossover comparison between cellulose triacetate and polysulphon.
    Grooteman MP; Nubé MJ; van Limbeek J; van Houte AJ; Daha MR; van Geelen JA
    ASAIO J; 1995; 41(2):215-20. PubMed ID: 7640431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prostaglandin production and extracorporeal complement activation by dialyzer membranes.
    Mahiout A; Jörres A; Meinhold H; Kessel M
    ASAIO Trans; 1986; 32(1):88-92. PubMed ID: 3490868
    [No Abstract]   [Full Text] [Related]  

  • 20. Increased binding of beta-2-microglobulin to blood cells in dialysis patients treated with high-flux dialyzers compared with low-flux membranes contributed to reduced beta-2-microglobulin concentrations. Results of a cross-over study.
    Traut M; Haufe CC; Eismann U; Deppisch RM; Stein G; Wolf G
    Blood Purif; 2007; 25(5-6):432-40. PubMed ID: 17957097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.