BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 30582038)

  • 1. Finite element models and material data for analysis of infant head impacts.
    Brooks T; Choi JE; Garnich M; Hammer N; Waddell JN; Duncan W; Jermy M
    Heliyon; 2018 Dec; 4(12):e01010. PubMed ID: 30582038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The importance of nonlinear tissue modelling in finite element simulations of infant head impacts.
    Li X; Sandler H; Kleiven S
    Biomech Model Mechanobiol; 2017 Jun; 16(3):823-840. PubMed ID: 27873038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity of material model parameters on finite element models of infant head impacts.
    Brooks T; Garnich M; Jermy M
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1675-1688. PubMed ID: 34047892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of skull fractures in blunt force head traumas using finite element head models.
    Lindgren N; Henningsen MJ; Jacobsen C; Villa C; Kleiven S; Li X
    Biomech Model Mechanobiol; 2024 Feb; 23(1):207-225. PubMed ID: 37656360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development, validation, and application of a parametric pediatric head finite element model for impact simulations.
    Li Z; Hu J; Reed MP; Rupp JD; Hoff CN; Zhang J; Cheng B
    Ann Biomed Eng; 2011 Dec; 39(12):2984-97. PubMed ID: 21947736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and global validation of a 1-week-old piglet head finite element model for impact simulations.
    Su ZQ; Li DP; Li R; Wang GL; Liu L; Wang YF; Guo YZ; Li ZG
    Chin J Traumatol; 2023 May; 26(3):147-154. PubMed ID: 35985904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A coupled physical-computational methodology for the investigation of short fall related infant head impact injury.
    Khalid GA; Prabhu RK; Arthurs O; Jones MD
    Forensic Sci Int; 2019 Jul; 300():170-186. PubMed ID: 31125762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parametric study of head impact in the infant.
    Coats B; Margulies SS; Ji S
    Stapp Car Crash J; 2007 Oct; 51():1-15. PubMed ID: 18278590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of passive muscle, skin, and adipose tissue mechanical properties on head and neck response in rear impacts assessed with a finite element model.
    Gierczycka D; Rycman A; Cronin D
    Traffic Inj Prev; 2021; 22(5):407-412. PubMed ID: 34037475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infant skull fractures: Accident or abuse?: Evidences from biomechanical analysis using finite element head models.
    Li X; Sandler H; Kleiven S
    Forensic Sci Int; 2019 Jan; 294():173-182. PubMed ID: 30529991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applying DTI white matter orientations to finite element head models to examine diffuse TBI under high rotational accelerations.
    Colgan NC; Gilchrist MD; Curran KM
    Prog Biophys Mol Biol; 2010 Dec; 103(2-3):304-9. PubMed ID: 20869383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compressive mechanical characterization of non-human primate spinal cord white matter.
    Jannesar S; Allen M; Mills S; Gibbons A; Bresnahan JC; Salegio EA; Sparrey CJ
    Acta Biomater; 2018 Jul; 74():260-269. PubMed ID: 29729417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of pedestrian brain injury due to vehicle impact using computational biomechanics models: Are head-only models sufficient?
    Wang F; Yu C; Wang B; Li G; Miller K; Wittek A
    Traffic Inj Prev; 2020; 21(1):102-107. PubMed ID: 31770038
    [No Abstract]   [Full Text] [Related]  

  • 14. Hyperelastic compressive mechanical properties of the subcalcaneal soft tissue: An inverse finite element analysis.
    Isvilanonda V; Iaquinto JM; Pai S; Mackenzie-Helnwein P; Ledoux WR
    J Biomech; 2016 May; 49(7):1186-1191. PubMed ID: 27040391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties.
    Yosibash Z; Tal D; Trabelsi N
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2707-23. PubMed ID: 20439270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development/global validation of a 6-month-old pediatric head finite element model and application in investigation of drop-induced infant head injury.
    Li Z; Luo X; Zhang J
    Comput Methods Programs Biomed; 2013 Dec; 112(3):309-19. PubMed ID: 24008251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain Material Properties and Integration of Arachnoid Complex for Biofidelic Impact Response for Human Head Finite Element Model.
    Rycman A; Bustamante M; Cronin DS
    Ann Biomed Eng; 2024 Apr; 52(4):908-919. PubMed ID: 38218736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Hyper-Viscoelastic Continuum-Level Finite Element Model of the Spinal Cord Assessed for Transverse Indentation and Impact Loading.
    Rycman A; McLachlin S; Cronin DS
    Front Bioeng Biotechnol; 2021; 9():693120. PubMed ID: 34458242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of bone and suture material properties on mandibular function in Alligator mississippiensis: testing theoretical phenotypes with finite element analysis.
    Reed DA; Porro LB; Iriarte-Diaz J; Lemberg JB; Holliday CM; Anapol F; Ross CF
    J Anat; 2011 Jan; 218(1):59-74. PubMed ID: 21091693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and validation of a physical model to investigate the biomechanics of infant head impact.
    Jones M; Darwall D; Khalid G; Prabhu R; Kemp A; Arthurs OJ; Theobald P
    Forensic Sci Int; 2017 Jul; 276():111-119. PubMed ID: 28525774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.