BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 3058205)

  • 1. Kinetic mechanism whereby DNA polymerase I (Klenow) replicates DNA with high fidelity.
    Kuchta RD; Benkovic P; Benkovic SJ
    Biochemistry; 1988 Sep; 27(18):6716-25. PubMed ID: 3058205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimal kinetic mechanism for misincorporation by DNA polymerase I (Klenow fragment).
    Eger BT; Benkovic SJ
    Biochemistry; 1992 Sep; 31(38):9227-36. PubMed ID: 1327109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fidelity of DNA synthesis catalyzed by derivatives of Escherichia coli DNA polymerase I.
    Bebenek K; Joyce CM; Fitzgerald MP; Kunkel TA
    J Biol Chem; 1990 Aug; 265(23):13878-87. PubMed ID: 2199444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of DNA replication fidelity for three mutants of DNA polymerase I: Klenow fragment KF(exo+), KF(polA5), and KF(exo-).
    Eger BT; Kuchta RD; Carroll SS; Benkovic PA; Dahlberg ME; Joyce CM; Benkovic SJ
    Biochemistry; 1991 Feb; 30(5):1441-8. PubMed ID: 1991125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determinants of DNA mismatch recognition within the polymerase domain of the Klenow fragment.
    Thompson EH; Bailey MF; van der Schans EJ; Joyce CM; Millar DP
    Biochemistry; 2002 Jan; 41(3):713-22. PubMed ID: 11790092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mutant of DNA polymerase I (Klenow fragment) with reduced fidelity.
    Carroll SS; Cowart M; Benkovic SJ
    Biochemistry; 1991 Jan; 30(3):804-13. PubMed ID: 1899034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic mechanism of DNA polymerase I (Klenow).
    Kuchta RD; Mizrahi V; Benkovic PA; Johnson KA; Benkovic SJ
    Biochemistry; 1987 Dec; 26(25):8410-7. PubMed ID: 3327522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fidelity of mispair formation and mispair extension is dependent on the interaction between the minor groove of the primer terminus and Arg668 of DNA polymerase I of Escherichia coli.
    McCain MD; Meyer AS; Schultz SS; Glekas A; Spratt TE
    Biochemistry; 2005 Apr; 44(15):5647-59. PubMed ID: 15823023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steady-state and pre-steady-state kinetic analysis of dNTP insertion opposite 8-oxo-7,8-dihydroguanine by Escherichia coli polymerases I exo- and II exo-.
    Lowe LG; Guengerich FP
    Biochemistry; 1996 Jul; 35(30):9840-9. PubMed ID: 8703958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mismatch-specific 3'----5' exonuclease associated with the mitochondrial DNA polymerase from Drosophila embryos.
    Kaguni LS; Olson MW
    Proc Natl Acad Sci U S A; 1989 Sep; 86(17):6469-73. PubMed ID: 2671990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct complexes of DNA polymerase I (Klenow fragment) for base and sugar discrimination during nucleotide substrate selection.
    Garalde DR; Simon CA; Dahl JM; Wang H; Akeson M; Lieberman KR
    J Biol Chem; 2011 Apr; 286(16):14480-92. PubMed ID: 21362617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic analysis of the coding properties of O6-methylguanine in DNA: the crucial role of the conformation of the phosphodiester bond.
    Tan HB; Swann PF; Chance EM
    Biochemistry; 1994 May; 33(17):5335-46. PubMed ID: 8172907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3'-5' exonuclease of Klenow fragment: role of amino acid residues within the single-stranded DNA binding region in exonucleolysis and duplex DNA melting.
    Lam WC; Thompson EH; Potapova O; Sun XC; Joyce CM; Millar DP
    Biochemistry; 2002 Mar; 41(12):3943-51. PubMed ID: 11900537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The 3'-5' exonuclease of DNA polymerase I of Escherichia coli: contribution of each amino acid at the active site to the reaction.
    Derbyshire V; Grindley ND; Joyce CM
    EMBO J; 1991 Jan; 10(1):17-24. PubMed ID: 1989882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How DNA travels between the separate polymerase and 3'-5'-exonuclease sites of DNA polymerase I (Klenow fragment).
    Joyce CM
    J Biol Chem; 1989 Jun; 264(18):10858-66. PubMed ID: 2659595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The J-helix of Escherichia coli DNA polymerase I (Klenow fragment) regulates polymerase and 3'- 5'-exonuclease functions.
    Tuske S; Singh K; Kaushik N; Modak MJ
    J Biol Chem; 2000 Aug; 275(31):23759-68. PubMed ID: 10818095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile polymerization of dNTPs bearing unnatural base analogues by DNA polymerase alpha and Klenow fragment (DNA polymerase I).
    Chiaramonte M; Moore CL; Kincaid K; Kuchta RD
    Biochemistry; 2003 Sep; 42(35):10472-81. PubMed ID: 12950174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic mechanism of DNA polymerase I (Klenow fragment): identification of a second conformational change and evaluation of the internal equilibrium constant.
    Dahlberg ME; Benkovic SJ
    Biochemistry; 1991 May; 30(20):4835-43. PubMed ID: 1645180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The nucleotide analog 2-aminopurine as a spectroscopic probe of nucleotide incorporation by the Klenow fragment of Escherichia coli polymerase I and bacteriophage T4 DNA polymerase.
    Frey MW; Sowers LC; Millar DP; Benkovic SJ
    Biochemistry; 1995 Jul; 34(28):9185-92. PubMed ID: 7619819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Replication of the base pair 6-thioguanine/5-methyl-2-pyrimidine with the large Klenow fragment of Escherichia coli DNA polymerase I.
    Rappaport HP
    Biochemistry; 1993 Mar; 32(12):3047-57. PubMed ID: 8457565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.