These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 30582471)
1. Biomechanics of the Healthy and Keratoconic Corneas: A Combination of the Clinical Data, Finite Element Analysis, and Artificial Neural Network. Karimi A; Meimani N; Razaghi R; Rahmati SM; Jadidi K; Rostami M Curr Pharm Des; 2018; 24(37):4474-4483. PubMed ID: 30582471 [TBL] [Abstract][Full Text] [Related]
2. Biomechanics of the keratoconic cornea: Theory, segmentation, pressure distribution, and coupled FE-optimization algorithm. Rahmati SM; Razaghi R; Karimi A J Mech Behav Biomed Mater; 2021 Jan; 113():104155. PubMed ID: 33125958 [TBL] [Abstract][Full Text] [Related]
3. Biomechanical assessment of healthy and keratoconic corneas (with/without crosslinking) using dynamic ultrahigh-speed Scheimpflug technology and the relevance of the parameter (A1L-A2L). Fuchsluger TA; Brettl S; Geerling G; Kaisers W; Franko Zeitz P Br J Ophthalmol; 2019 Apr; 103(4):558-564. PubMed ID: 29871966 [TBL] [Abstract][Full Text] [Related]
4. Dynamic Scheimpflug-based assessment of keratoconus and the effects of corneal cross-linking. Bak-Nielsen S; Pedersen IB; Ivarsen A; Hjortdal J J Refract Surg; 2014 Jun; 30(6):408-14. PubMed ID: 24972407 [TBL] [Abstract][Full Text] [Related]
5. Diagnostic Ability of Corneal Shape and Biomechanical Parameters for Detecting Frank Keratoconus. Sedaghat MR; Momeni-Moghaddam H; Ambrósio R; Heidari HR; Maddah N; Danesh Z; Sabzi F Cornea; 2018 Aug; 37(8):1025-1034. PubMed ID: 29847493 [TBL] [Abstract][Full Text] [Related]
6. Introduction of Two Novel Stiffness Parameters and Interpretation of Air Puff-Induced Biomechanical Deformation Parameters With a Dynamic Scheimpflug Analyzer. Roberts CJ; Mahmoud AM; Bons JP; Hossain A; Elsheikh A; Vinciguerra R; Vinciguerra P; Ambrósio R J Refract Surg; 2017 Apr; 33(4):266-273. PubMed ID: 28407167 [TBL] [Abstract][Full Text] [Related]
7. Biomechanical responses of healthy and keratoconic corneas measured using a noncontact scheimpflug-based tonometer. Ali NQ; Patel DV; McGhee CN Invest Ophthalmol Vis Sci; 2014 May; 55(6):3651-9. PubMed ID: 24833745 [TBL] [Abstract][Full Text] [Related]
8. Performance of Corvis ST Parameters Including Updated Stress-Strain Index in Differentiating Between Normal, Forme-Fruste, Subclinical, and Clinical Keratoconic Eyes. Miao YY; Ma XM; Qu ZX; Eliasy A; Wu BW; Xu H; Wang P; Zheng XB; Wang JJ; Ye YF; Chen SH; Elsheikh A; Bao FJ Am J Ophthalmol; 2024 Feb; 258():196-207. PubMed ID: 37879454 [TBL] [Abstract][Full Text] [Related]
10. [Examination and discriminant analysis of corneal biomechanics with CorVis ST in keratoconus and subclinical keratoconus]. Wu Y; Li XL; Yang SL; Yan XM; Li HL Beijing Da Xue Xue Bao Yi Xue Ban; 2019 Oct; 51(5):881-886. PubMed ID: 31624393 [TBL] [Abstract][Full Text] [Related]
11. Biomechanical analysis of the keratoconic cornea. Gefen A; Shalom R; Elad D; Mandel Y J Mech Behav Biomed Mater; 2009 Jul; 2(3):224-36. PubMed ID: 19627827 [TBL] [Abstract][Full Text] [Related]
12. Long-term Evaluation of Corneal Biomechanical Properties After Corneal Cross-linking for Keratoconus: A 4-Year Longitudinal Study. Sedaghat MR; Momeni-Moghaddam H; Ambrósio R; Roberts CJ; Yekta AA; Danesh Z; Reisdorf S; Khabazkhoob M; Heidari HR; Sadeghi J J Refract Surg; 2018 Dec; 34(12):849-856. PubMed ID: 30540368 [TBL] [Abstract][Full Text] [Related]
13. [Influence factors and differences of posterior corneal elevation measured by Pentacam system combined with Corvis ST]. Peng YS; Chen M; Tian L; Li H; Li DW; Zhang FF Zhonghua Yan Ke Za Zhi; 2020 Feb; 56(2):110-117. PubMed ID: 32074821 [No Abstract] [Full Text] [Related]
14. Comparison of Corneal Dynamic and Tomographic Analysis in Normal, Forme Fruste Keratoconic, and Keratoconic Eyes. Wang YM; Chan TCY; Yu M; Jhanji V J Refract Surg; 2017 Sep; 33(9):632-638. PubMed ID: 28880339 [TBL] [Abstract][Full Text] [Related]
15. Assessment of ocular biomechanics using dynamic ultra high-speed Scheimpflug imaging in keratoconic and normal eyes. Tian L; Ko MW; Wang LK; Zhang JY; Li TJ; Huang YF; Zheng YP J Refract Surg; 2014 Nov; 30(11):785-91. PubMed ID: 25291757 [TBL] [Abstract][Full Text] [Related]
16. Dynamic corneal biomechanics in different cell layers: in keratoconus and normal eyes. Alvani A; Hashemi H; Pakravan M; Mahbod M; Amanzadeh K; Seyedian MA; Yaseri M; Jafarzadehpur E; Fotouhi A Ophthalmic Physiol Opt; 2021 Mar; 41(2):414-423. PubMed ID: 33236803 [TBL] [Abstract][Full Text] [Related]
17. Corneal biomechanical assessment using corneal visualization scheimpflug technology in keratoconic and normal eyes. Tian L; Huang YF; Wang LQ; Bai H; Wang Q; Jiang JJ; Wu Y; Gao M J Ophthalmol; 2014; 2014():147516. PubMed ID: 24800059 [TBL] [Abstract][Full Text] [Related]
18. Corneal Biomechanics in Unilateral Keratoconus and Fellow Eyes with a Scheimpflug-based Tonometer. Catalán-López S; Cadarso-Suárez L; López-Ratón M; Cadarso-Suárez C Optom Vis Sci; 2018 Jul; 95(7):608-615. PubMed ID: 29957740 [TBL] [Abstract][Full Text] [Related]
19. Comparison of corneal biomechanical properties in healthy thin corneas with matched keratoconus eyes. Sedaghat MR; Momeni-Moghaddam H; Ehsaei A; Vinciguerra R; Zamani O; Robabi H J Cataract Refract Surg; 2023 Mar; 49(3):234-238. PubMed ID: 36449663 [TBL] [Abstract][Full Text] [Related]
20. Detection of subclinical keratoconus through non-contact tonometry and the use of discriminant biomechanical functions. Peña-García P; Peris-Martínez C; Abbouda A; Ruiz-Moreno JM J Biomech; 2016 Feb; 49(3):353-63. PubMed ID: 26777602 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]