These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 30582548)

  • 1. Gait and Dynamic Balance Sensing Using Wearable Foot Sensors.
    Mohamed Refai MI; van Beijnum BF; Buurke JH; Veltink PH
    IEEE Trans Neural Syst Rehabil Eng; 2019 Feb; 27(2):218-227. PubMed ID: 30582548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ambulatory assessment of walking balance after stroke using instrumented shoes.
    van Meulen FB; Weenk D; Buurke JH; van Beijnum BJ; Veltink PH
    J Neuroeng Rehabil; 2016 May; 13(1):48. PubMed ID: 27198134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inertial sensing algorithms for long-term foot angle monitoring for assessment of idiopathic toe-walking.
    Chalmers E; Le J; Sukhdeep D; Watt J; Andersen J; Lou E
    Gait Posture; 2014; 39(1):485-9. PubMed ID: 24050952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of ground reaction forces and joint moments on the basis on plantar pressure insoles and wearable sensors for joint angle measurement.
    Ostaszewski M; Pauk J
    Technol Health Care; 2018; 26(S2):605-612. PubMed ID: 29843283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements.
    Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S
    Gait Posture; 2018 Oct; 66():76-82. PubMed ID: 30170137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database.
    Khandelwal S; Wickström N
    Gait Posture; 2017 Jan; 51():84-90. PubMed ID: 27736735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does the margin of stability measure predict medio-lateral stability of gait with a constrained-width base of support?
    Gill L; Huntley AH; Mansfield A
    J Biomech; 2019 Oct; 95():109317. PubMed ID: 31466717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Consistent accuracy in whole-body joint kinetics during gait using wearable inertial motion sensors and in-shoe pressure sensors.
    Khurelbaatar T; Kim K; Lee S; Kim YH
    Gait Posture; 2015 Jun; 42(1):65-9. PubMed ID: 25957652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shoe-Insole Technology for Injury Prevention in Walking.
    Nagano H; Begg RK
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29738486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Test-retest reliability of the Tekscan® F-Scan® 7 in-shoe plantar pressure system during treadmill walking in healthy recreationally active individuals.
    Patrick K; Donovan L
    Sports Biomech; 2018 Mar; 17(1):83-97. PubMed ID: 28927350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of wearable visual feedback for retraining foot progression angle using inertial sensors and an augmented reality headset.
    Karatsidis A; Richards RE; Konrath JM; van den Noort JC; Schepers HM; Bellusci G; Harlaar J; Veltink PH
    J Neuroeng Rehabil; 2018 Aug; 15(1):78. PubMed ID: 30111337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate Ambulatory Gait Analysis in Walking and Running Using Machine Learning Models.
    Zhang H; Guo Y; Zanotto D
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):191-202. PubMed ID: 31831428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PI-Sole: A Low-Cost Solution for Gait Monitoring Using Off-The-Shelf Piezoelectric Sensors and IMU.
    Chandel V; Singhal S; Sharma V; Ahmed N; Ghose A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3290-3296. PubMed ID: 31946586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Ambulatory Gait Monitoring System with Activity Classification and Gait Parameter Calculation Based on a Single Foot Inertial Sensor.
    Song M; Kim J
    IEEE Trans Biomed Eng; 2018 Apr; 65(4):885-893. PubMed ID: 28708542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait Event Detection in Controlled and Real-Life Situations: Repeated Measures From Healthy Subjects.
    Figueiredo J; Felix P; Costa L; Moreno JC; Santos CP
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):1945-1956. PubMed ID: 30334739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Controlled Slip" Energy Harvesting While Walking.
    Xia H; Chen DKY; Zhu X; Shull PB
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):437-443. PubMed ID: 31870988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A New Proxy Measurement Algorithm with Application to the Estimation of Vertical Ground Reaction Forces Using Wearable Sensors.
    Guo Y; Storm F; Zhao Y; Billings SA; Pavic A; Mazzà C; Guo LZ
    Sensors (Basel); 2017 Sep; 17(10):. PubMed ID: 28937593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validity and reliability of a commercial wearable sensor system for measuring spatiotemporal gait parameters in a post-stroke population: the effects of walking speed and asymmetry.
    Lanotte F; Shin SY; O'Brien MK; Jayaraman A
    Physiol Meas; 2023 Aug; 44(8):. PubMed ID: 37557187
    [No Abstract]   [Full Text] [Related]  

  • 19. Validation of a smart shoe for estimating foot progression angle during walking gait.
    Xia H; Xu J; Wang J; Hunt MA; Shull PB
    J Biomech; 2017 Aug; 61():193-198. PubMed ID: 28780187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pedestrian Navigation Method Based on Machine Learning and Gait Feature Assistance.
    Zhou Z; Yang S; Ni Z; Qian W; Gu C; Cao Z
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.