These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 30582550)

  • 1. Causal Reasoning on Boolean Control Networks Based on Abduction: Theory and Application to Cancer Drug Discovery.
    Biane C; Delaplace F
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1574-1585. PubMed ID: 30582550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel algorithm for finding optimal driver nodes to target control complex networks and its applications for drug targets identification.
    Guo WF; Zhang SW; Shi QQ; Zhang CM; Zeng T; Chen L
    BMC Genomics; 2018 Jan; 19(Suppl 1):924. PubMed ID: 29363426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling Cellular Differentiation and Reprogramming with Gene Regulatory Networks.
    Hartmann A; Ravichandran S; Del Sol A
    Methods Mol Biol; 2019; 1975():37-51. PubMed ID: 31062304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian Inference Identifies Combination Therapeutic Targets in Breast Cancer.
    Vundavilli H; Datta A; Sima C; Hua J; Lopes R; Bittner M
    IEEE Trans Biomed Eng; 2019 Sep; 66(9):2684-2692. PubMed ID: 30676941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Algorithms for the Sequential Reprogramming of Boolean Networks.
    Mandon H; Su C; Pang J; Paul S; Haar S; Pauleve L
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1610-1619. PubMed ID: 31056515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An in silico target identification using Boolean network attractors: Avoiding pathological phenotypes.
    Poret A; Boissel JP
    C R Biol; 2014 Dec; 337(12):661-78. PubMed ID: 25433558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution and Controllability of Cancer Networks: A Boolean Perspective.
    Srihari S; Raman V; Leong HW; Ragan MA
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(1):83-94. PubMed ID: 26355510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drug2ways: Reasoning over causal paths in biological networks for drug discovery.
    Rivas-Barragan D; Mubeen S; Guim Bernat F; Hofmann-Apitius M; Domingo-Fernández D
    PLoS Comput Biol; 2020 Dec; 16(12):e1008464. PubMed ID: 33264280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network pharmacology for cancer drug discovery: are we there yet?
    Azmi AS
    Future Med Chem; 2012 May; 4(8):939-41. PubMed ID: 22650234
    [No Abstract]   [Full Text] [Related]  

  • 10. CODEX: COunterfactual Deep learning for the in silico EXploration of cancer cell line perturbations.
    Schrod S; Zacharias HU; Beißbarth T; Hauschild AC; Altenbuchinger M
    Bioinformatics; 2024 Jun; 40(Supplement_1):i91-i99. PubMed ID: 38940173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Networks and games for precision medicine.
    Biane C; Delaplace F; Klaudel H
    Biosystems; 2016 Dec; 150():52-60. PubMed ID: 27543134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of Boolean metabolic networks: integer linear programming based approach.
    Qiu Y; Jiang H; Ching WK; Cheng X
    BMC Syst Biol; 2018 Apr; 12(Suppl 1):7. PubMed ID: 29671395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conditional robustness analysis for fragility discovery and target identification in biochemical networks and in cancer systems biology.
    Bianconi F; Baldelli E; Ludovini V; Petricoin EF; Crinò L; Valigi P
    BMC Syst Biol; 2015 Oct; 9():70. PubMed ID: 26482604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Network pharmacology and drug discovery].
    Wang J; Li XJ
    Sheng Li Ke Xue Jin Zhan; 2011 Aug; 42(4):241-5. PubMed ID: 22066413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of anti-tumour biologics using primary tumour models, 3-D phenotypic screening and image-based multi-parametric profiling.
    Sandercock AM; Rust S; Guillard S; Sachsenmeier KF; Holoweckyj N; Hay C; Flynn M; Huang Q; Yan K; Herpers B; Price LS; Soden J; Freeth J; Jermutus L; Hollingsworth R; Minter R
    Mol Cancer; 2015 Jul; 14():147. PubMed ID: 26227951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug target identification in sphingolipid metabolism by computational systems biology tools: metabolic control analysis and metabolic pathway analysis.
    Ozbayraktar FB; Ulgen KO
    J Biomed Inform; 2010 Aug; 43(4):537-49. PubMed ID: 20348024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An algorithm for direct causal learning of influences on patient outcomes.
    Rathnam C; Lee S; Jiang X
    Artif Intell Med; 2017 Jan; 75():1-15. PubMed ID: 28363452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational discovery of dual-indication multi-target PDE/Kinase inhibitor for precision anti-cancer therapy using structural systems pharmacology.
    Lim H; He D; Qiu Y; Krawczuk P; Sun X; Xie L
    PLoS Comput Biol; 2019 Jun; 15(6):e1006619. PubMed ID: 31206508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Network-Based Cancer Drug Discovery: From Integrated Multi-Omics Approaches to Precision Medicine.
    Turanli B; Karagoz K; Gulfidan G; Sinha R; Mardinoglu A; Arga KY
    Curr Pharm Des; 2018; 24(32):3778-3790. PubMed ID: 30398107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional Identification of Target by Expression Proteomics (FITExP) reveals protein targets and highlights mechanisms of action of small molecule drugs.
    Chernobrovkin A; Marin-Vicente C; Visa N; Zubarev RA
    Sci Rep; 2015 Jun; 5():11176. PubMed ID: 26052917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.