BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 30582586)

  • 1. A Chromatin Immunoprecipitation Assay to Identify Novel NFAT2 Target Genes in Chronic Lymphocytic Leukemia.
    Fuchs AR; Märklin M; Heitmann JS; Futterknecht S; Haap M; Wirths S; Kopp HG; Hinterleitner C; Dörfel D; Müller MR
    J Vis Exp; 2018 Dec; (142):. PubMed ID: 30582586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NFAT2 is a critical regulator of the anergic phenotype in chronic lymphocytic leukaemia.
    Märklin M; Heitmann JS; Fuchs AR; Truckenmüller FM; Gutknecht M; Bugl S; Saur SJ; Lazarus J; Kohlhofer U; Quintanilla-Martinez L; Rammensee HG; Salih HR; Kopp HG; Haap M; Kirschniak A; Kanz L; Rao A; Wirths S; Müller MR
    Nat Commun; 2017 Oct; 8(1):755. PubMed ID: 28970470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CD5 promotes IL-10 production in chronic lymphocytic leukemia B cells through STAT3 and NFAT2 activation.
    Garaud S; Morva A; Lemoine S; Hillion S; Bordron A; Pers JO; Berthou C; Mageed RA; Renaudineau Y; Youinou P
    J Immunol; 2011 Apr; 186(8):4835-44. PubMed ID: 21398617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic Loss of LCK Kinase Leads to Acceleration of Chronic Lymphocytic Leukemia.
    Märklin M; Fuchs AR; Tandler C; Heitmann JS; Salih HR; Kauer J; Quintanilla-Martinez L; Wirths S; Kopp HG; Müller MR
    Front Immunol; 2020; 11():1995. PubMed ID: 32983140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of NFAT2 expression results in the acceleration of clonal evolution in chronic lymphocytic leukemia.
    Müller DJ; Wirths S; Fuchs AR; Märklin M; Heitmann JS; Sturm M; Haap M; Kirschniak A; Sasaki Y; Kanz L; Kopp HG; Müller MR
    J Leukoc Biol; 2019 Mar; 105(3):531-538. PubMed ID: 30556925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of in vivo transcription factor recruitment by chromatin immunoprecipitation of mouse embryonic kidney.
    Heliot C; Cereghini S
    Methods Mol Biol; 2012; 886():275-91. PubMed ID: 22639270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA-Binding Factor Target Identification by Chromatin Immunoprecipitation (ChIP) in Plants.
    Posé D; Yant L
    Methods Mol Biol; 2016; 1363():25-35. PubMed ID: 26577778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-step cross-linking method for identification of NF-kappaB gene network by chromatin immunoprecipitation.
    Nowak DE; Tian B; Brasier AR
    Biotechniques; 2005 Nov; 39(5):715-25. PubMed ID: 16315372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromatin Immunoprecipitation: Application to the Study of Asthma.
    García-Sánchez A; Marqués-García F
    Methods Mol Biol; 2016; 1434():121-37. PubMed ID: 27300535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatin Immunoprecipitation (ChIP) Assay in Candida albicans.
    Mitra S; Rai LS; Chatterjee G; Sanyal K
    Methods Mol Biol; 2016; 1356():43-57. PubMed ID: 26519064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin Immunoprecipitation and Quantitative Real-Time PCR to Assess Binding of a Protein of Interest to Identified Predicted Binding Sites Within a Promoter.
    Read JE
    Methods Mol Biol; 2017; 1651():23-32. PubMed ID: 28801897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of transcription factor-DNA interactions using chromatin immunoprecipitation assays.
    Nie L; Vázquez AE; Yamoah EN
    Methods Mol Biol; 2009; 493():311-21. PubMed ID: 18839356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of the p66Shc protein adaptor is regulated by the activator of transcription STAT4 in normal and chronic lymphocytic leukemia B cells.
    Cattaneo F; Patrussi L; Capitani N; Frezzato F; D'Elios MM; Trentin L; Semenzato G; Baldari CT
    Oncotarget; 2016 Aug; 7(35):57086-57098. PubMed ID: 27494881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CD150 and CD180 are involved in regulation of transcription factors expression in chronic lymphocytic leukemia cells.
    Gordiienko I; Shlapatska L; Kholodniuk VM; Kovalevska L; Ivanivskaya TS; Sidorenko SP
    Exp Oncol; 2017 Dec; 39(4):291-298. PubMed ID: 29284783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatin immunoprecipitation analysis in filamentous fungi.
    Boedi S; Reyes-Dominguez Y; Strauss J
    Methods Mol Biol; 2012; 944():221-36. PubMed ID: 23065620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo.
    Aparicio O; Geisberg JV; Struhl K
    Curr Protoc Cell Biol; 2004 Sep; Chapter 17():Unit 17.7. PubMed ID: 18228445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The regulatory interaction of EVI1 with the TCL1A oncogene impacts cell survival and clinical outcome in CLL.
    Vasyutina E; Boucas JM; Bloehdorn J; Aszyk C; Crispatzu G; Stiefelhagen M; Breuer A; Mayer P; Lengerke C; Döhner H; Beutner D; Rosenwald A; Stilgenbauer S; Hallek M; Benner A; Herling M
    Leukemia; 2015 Oct; 29(10):2003-14. PubMed ID: 25936528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatin immunoprecipitation using microarrays.
    Durand-Dubief M; Ekwall K
    Methods Mol Biol; 2009; 529():279-95. PubMed ID: 19381973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatin Immunoprecipitation.
    DeCaprio J; Kohl TO
    Cold Spring Harb Protoc; 2020 Aug; 2020(8):098665. PubMed ID: 32747583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin immunoprecipitation and multiplex sequencing (ChIP-Seq) to identify global transcription factor binding sites in the nematode Caenorhabditis elegans.
    Brdlik CM; Niu W; Snyder M
    Methods Enzymol; 2014; 539():89-111. PubMed ID: 24581441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.