BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 30582587)

  • 1. Interfacing Microfluidics with Microelectrode Arrays for Studying Neuronal Communication and Axonal Signal Propagation.
    Lopes CDF; Mateus JC; Aguiar P
    J Vis Exp; 2018 Dec; (142):. PubMed ID: 30582587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. µSpikeHunter: An advanced computational tool for the analysis of neuronal communication and action potential propagation in microfluidic platforms.
    Heiney K; Mateus JC; Lopes CDF; Neto E; Lamghari M; Aguiar P
    Sci Rep; 2019 Apr; 9(1):5777. PubMed ID: 30962522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Axonal Spikes in Cultured Neuronal Networks Using Microelectrode Arrays and Microchannel Devices.
    Hong N; Joo S; Nam Y
    IEEE Trans Biomed Eng; 2017 Feb; 64(2):492-498. PubMed ID: 27187941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An automated method for precise axon reconstruction from recordings of high-density micro-electrode arrays.
    Buccino AP; Yuan X; Emmenegger V; Xue X; Gänswein T; Hierlemann A
    J Neural Eng; 2022 Mar; 19(2):. PubMed ID: 35234667
    [No Abstract]   [Full Text] [Related]  

  • 5. A Method for Recording the Bioelectrical Activity of Neural Axons upon Stimulation with Short Pulses of Infrared Laser Radiation.
    Pigareva YI; Antipova OO; Kolpakov VN; Martynova OV; Popova AA; Mukhina IV; Pimashkin AS; Es'kin VA
    Sovrem Tekhnologii Med; 2021; 12(6):21-27. PubMed ID: 34796015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Action potential propagation recorded from single axonal arbors using multielectrode arrays.
    Tovar KR; Bridges DC; Wu B; Randall C; Audouard M; Jang J; Hansma PK; Kosik KS
    J Neurophysiol; 2018 Jul; 120(1):306-320. PubMed ID: 29641308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A low-noise, modular, and versatile analog front-end intended for processing in vitro neuronal signals detected by microelectrode arrays.
    Regalia G; Biffi E; Ferrigno G; Pedrocchi A
    Comput Intell Neurosci; 2015; 2015():172396. PubMed ID: 25977683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic and compartmentalized platforms for neurobiological research.
    Taylor AM; Jeon NL
    Crit Rev Biomed Eng; 2011; 39(3):185-200. PubMed ID: 21967302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-Scale, High-Resolution Microelectrode Arrays for Interrogation of Neurons and Networks.
    Obien MEJ; Frey U
    Adv Neurobiol; 2019; 22():83-123. PubMed ID: 31073933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long term recordings with microelectrode arrays: studies of transcription-dependent neuronal plasticity and axonal regeneration.
    Hofmann F; Bading H
    J Physiol Paris; 2006; 99(2-3):125-32. PubMed ID: 16442786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular recordings from locally dense microelectrode arrays coupled to dissociated cortical cultures.
    Berdondini L; Massobrio P; Chiappalone M; Tedesco M; Imfeld K; Maccione A; Gandolfo M; Koudelka-Hep M; Martinoia S
    J Neurosci Methods; 2009 Mar; 177(2):386-96. PubMed ID: 19027792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simultaneous optical and electrical in-vitro neuronal recording system to evaluate microelectrode performance.
    Aqrawe Z; Patel N; Vyas Y; Bansal M; Montgomery J; Travas-Sejdic J; Svirskis D
    PLoS One; 2020; 15(8):e0237709. PubMed ID: 32817653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multielectrode array microchannel platform reveals both transient and slow changes in axonal conduction velocity.
    Habibey R; Latifi S; Mousavi H; Pesce M; Arab-Tehrany E; Blau A
    Sci Rep; 2017 Aug; 7(1):8558. PubMed ID: 28819130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recording large extracellular spikes in microchannels along many axonal sites from individual neurons.
    Lewandowska MK; Bakkum DJ; Rompani SB; Hierlemann A
    PLoS One; 2015; 10(3):e0118514. PubMed ID: 25734567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Technologies to Study Action Potential Propagation With a Focus on HD-MEAs.
    Emmenegger V; Obien MEJ; Franke F; Hierlemann A
    Front Cell Neurosci; 2019; 13():159. PubMed ID: 31118887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracking axonal action potential propagation on a high-density microelectrode array across hundreds of sites.
    Bakkum DJ; Frey U; Radivojevic M; Russell TL; Müller J; Fiscella M; Takahashi H; Hierlemann A
    Nat Commun; 2013; 4():2181. PubMed ID: 23867868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-function dynamics of engineered, modular neuronal networks with controllable afferent-efferent connectivity.
    Winter-Hjelm N; Brune Tomren Å; Sikorski P; Sandvig A; Sandvig I
    J Neural Eng; 2023 Aug; 20(4):. PubMed ID: 37399808
    [No Abstract]   [Full Text] [Related]  

  • 18. Functional imaging of brain organoids using high-density microelectrode arrays.
    Schröter M; Wang C; Terrigno M; Hornauer P; Huang Z; Jagasia R; Hierlemann A
    MRS Bull; 2022; 47(6):530-544. PubMed ID: 36120104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidics and multielectrode array-compatible organotypic slice culture method.
    Berdichevsky Y; Sabolek H; Levine JB; Staley KJ; Yarmush ML
    J Neurosci Methods; 2009 Mar; 178(1):59-64. PubMed ID: 19100768
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.