These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 30582634)

  • 41. Determinants of dual substrate specificity revealed by the crystal structure of homoisocitrate dehydrogenase from Thermus thermophilus in complex with homoisocitrate·Mg(2+)·NADH.
    Takahashi K; Tomita T; Kuzuyama T; Nishiyama M
    Biochem Biophys Res Commun; 2016 Sep; 478(4):1688-93. PubMed ID: 27601325
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The specificity in vivo of two distinct methionine aminopeptidases in Saccharomyces cerevisiae.
    Chen S; Vetro JA; Chang YH
    Arch Biochem Biophys; 2002 Feb; 398(1):87-93. PubMed ID: 11811952
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Control activity of yeast geranylgeranyl diphosphate synthase from dimer interface through H-bonds and hydrophobic interaction.
    Chang CK; Teng KH; Lin SW; Chang TH; Liang PH
    Biochemistry; 2013 Apr; 52(16):2783-92. PubMed ID: 23534508
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structure-based elucidation of the regulatory mechanism for aminopeptidase activity.
    Ta HM; Bae S; Han S; Song J; Ahn TK; Hohng S; Lee S; Kim KK
    Acta Crystallogr D Biol Crystallogr; 2013 Sep; 69(Pt 9):1738-47. PubMed ID: 23999297
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Aspartyl aminopeptidase of Schizosaccharomyces pombe has a molecular chaperone function.
    Lee S; Kim JS; Yun CH; Chae HZ; Kim K
    BMB Rep; 2009 Dec; 42(12):812-6. PubMed ID: 20044953
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Insights into the structural and mechanistic basis of multifunctional S. cerevisiae Pif1p helicase.
    Lu KY; Chen WF; Rety S; Liu NN; Wu WQ; Dai YX; Li D; Ma HY; Dou SX; Xi XG
    Nucleic Acids Res; 2018 Feb; 46(3):1486-1500. PubMed ID: 29202194
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Crystal structures of Fms1 and its complex with spermine reveal substrate specificity.
    Huang Q; Liu Q; Hao Q
    J Mol Biol; 2005 May; 348(4):951-9. PubMed ID: 15843025
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Crystal Structure and Biochemical Characterization of an Aminopeptidase LapB from Legionella pneumophila.
    Zhang N; Yin S; Zhang W; Gong X; Zhang N; Fang K; Ge H
    J Agric Food Chem; 2017 Aug; 65(34):7569-7578. PubMed ID: 28776986
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structure of peptidase T from Salmonella typhimurium.
    Håkansson K; Miller CG
    Eur J Biochem; 2002 Jan; 269(2):443-50. PubMed ID: 11856302
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The crystal structure of human endoplasmic reticulum aminopeptidase 2 reveals the atomic basis for distinct roles in antigen processing.
    Birtley JR; Saridakis E; Stratikos E; Mavridis IM
    Biochemistry; 2012 Jan; 51(1):286-95. PubMed ID: 22106953
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structural determinants for phosphatidylinositol recognition by Sfh3 and substrate-induced dimer-monomer transition during lipid transfer cycles.
    Yang H; Tong J; Leonard TA; Im YJ
    FEBS Lett; 2013 Jun; 587(11):1610-6. PubMed ID: 23603387
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Aminopeptidase from Streptomyces griseus: primary structure and comparison with other zinc-containing aminopeptidases.
    Maras B; Greenblatt HM; Shoham G; Spungin-Bialik A; Blumberg S; Barra D
    Eur J Biochem; 1996 Mar; 236(3):843-6. PubMed ID: 8665903
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tyrosine nitration moderates the peptidase activity of human methionyl aminopeptidase 2.
    Ng JY; Chiu J; Hogg PJ; Wong JW
    Biochem Biophys Res Commun; 2013 Oct; 440(1):37-42. PubMed ID: 24041691
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Crystal structure of the PP2A phosphatase activator: implications for its PP2A-specific PPIase activity.
    Leulliot N; Vicentini G; Jordens J; Quevillon-Cheruel S; Schiltz M; Barford D; van Tilbeurgh H; Goris J
    Mol Cell; 2006 Aug; 23(3):413-24. PubMed ID: 16885030
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A glutamate residue contributes to the exopeptidase specificity in aminopeptidase A.
    Vazeux G; Iturrioz X; Corvol P; Llorens-Cortes C
    Biochem J; 1998 Sep; 334 ( Pt 2)(Pt 2):407-13. PubMed ID: 9716499
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tuned by metals: the TET peptidase activity is controlled by 3 metal binding sites.
    Colombo M; Girard E; Franzetti B
    Sci Rep; 2016 Feb; 6():20876. PubMed ID: 26853450
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Solution structures of two FHA1-phosphothreonine peptide complexes provide insight into the structural basis of the ligand specificity of FHA1 from yeast Rad53.
    Yuan C; Yongkiettrakul S; Byeon IJ; Zhou S; Tsai MD
    J Mol Biol; 2001 Nov; 314(3):563-75. PubMed ID: 11846567
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structure of the RACK1 dimer from Saccharomyces cerevisiae.
    Yatime L; Hein KL; Nilsson J; Nissen P
    J Mol Biol; 2011 Aug; 411(2):486-98. PubMed ID: 21704636
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural and Biochemical Insights into the Multiple Functions of Yeast Grx3.
    Chi CB; Tang Y; Zhang J; Dai YN; Abdalla M; Chen Y; Zhou CZ
    J Mol Biol; 2018 Apr; 430(8):1235-1248. PubMed ID: 29524511
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Crystal structure of X-prolyl aminopeptidase from Caenorhabditis elegans: A cytosolic enzyme with a di-nuclear active site.
    Iyer S; La-Borde PJ; Payne KA; Parsons MR; Turner AJ; Isaac RE; Acharya KR
    FEBS Open Bio; 2015; 5():292-302. PubMed ID: 25905034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.