BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 30582748)

  • 1. The dependence of brain mitochondria reactive oxygen species production on oxygen level is linear, except when inhibited by antimycin A.
    Stepanova A; Konrad C; Manfredi G; Springett R; Ten V; Galkin A
    J Neurochem; 2019 Mar; 148(6):731-745. PubMed ID: 30582748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen sensitivity of mitochondrial reactive oxygen species generation depends on metabolic conditions.
    Hoffman DL; Brookes PS
    J Biol Chem; 2009 Jun; 284(24):16236-16245. PubMed ID: 19366681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of alpha-glycerophosphate-evoked H2O2 generation in brain mitochondria.
    Tretter L; Takacs K; Hegedus V; Adam-Vizi V
    J Neurochem; 2007 Feb; 100(3):650-63. PubMed ID: 17263793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of isoflurane on complex II‑associated mitochondrial respiration and reactive oxygen species production: Roles of nitric oxide and mitochondrial KATP channels.
    Wang J; Sun J; Qiao S; Li H; Che T; Wang C; An J
    Mol Med Rep; 2019 Nov; 20(5):4383-4390. PubMed ID: 31545457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of bioenergetics, temperature and cadmium on liver mitochondria reactive oxygen species production and consumption.
    Okoye CN; MacDonald-Jay N; Kamunde C
    Aquat Toxicol; 2019 Sep; 214():105264. PubMed ID: 31377504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shift in the localization of sites of hydrogen peroxide production in brain mitochondria by mitochondrial stress.
    Gyulkhandanyan AV; Pennefather PS
    J Neurochem; 2004 Jul; 90(2):405-21. PubMed ID: 15228597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of reactive oxygen species by mitochondria: central role of complex III.
    Chen Q; Vazquez EJ; Moghaddas S; Hoppel CL; Lesnefsky EJ
    J Biol Chem; 2003 Sep; 278(38):36027-31. PubMed ID: 12840017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unveiling a key role of oxaloacetate-glutamate interaction in regulation of respiration and ROS generation in nonsynaptic brain mitochondria using a kinetic model.
    Selivanov VA; Zagubnaya OA; Nartsissov YR; Cascante M
    PLoS One; 2021; 16(8):e0255164. PubMed ID: 34343196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex III.
    Korge P; Calmettes G; John SA; Weiss JN
    J Biol Chem; 2017 Jun; 292(24):9882-9895. PubMed ID: 28450391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Respiratory chain components involved in the glycerophosphate dehydrogenase-dependent ROS production by brown adipose tissue mitochondria.
    Vrbacký M; Drahota Z; Mrácek T; Vojtísková A; Jesina P; Stopka P; Houstek J
    Biochim Biophys Acta; 2007 Jul; 1767(7):989-97. PubMed ID: 17560536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeltaPsi(m)-Dependent and -independent production of reactive oxygen species by rat brain mitochondria.
    Votyakova TV; Reynolds IJ
    J Neurochem; 2001 Oct; 79(2):266-77. PubMed ID: 11677254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The neuromediator glutamate, through specific substrate interactions, enhances mitochondrial ATP production and reactive oxygen species generation in nonsynaptic brain mitochondria.
    Panov A; Schonfeld P; Dikalov S; Hemendinger R; Bonkovsky HL; Brooks BR
    J Biol Chem; 2009 May; 284(21):14448-56. PubMed ID: 19304986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen-dependence of mitochondrial ROS production as detected by Amplex Red assay.
    Grivennikova VG; Kareyeva AV; Vinogradov AD
    Redox Biol; 2018 Jul; 17():192-199. PubMed ID: 29702406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of resveratrol on the rat brain respiratory chain.
    Zini R; Morin C; Bertelli A; Bertelli AA; Tillement JP
    Drugs Exp Clin Res; 1999; 25(2-3):87-97. PubMed ID: 10370869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolated respiring heart mitochondria release reactive oxygen species in states 4 and 3.
    Saborido A; Soblechero L; Megías A
    Free Radic Res; 2005 Sep; 39(9):921-31. PubMed ID: 16087473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex II.
    Korge P; John SA; Calmettes G; Weiss JN
    J Biol Chem; 2017 Jun; 292(24):9896-9905. PubMed ID: 28450394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Krebs cycle metabolites and preferential succinate oxidation following neonatal hypoxic-ischemic brain injury in mice.
    Sahni PV; Zhang J; Sosunov S; Galkin A; Niatsetskaya Z; Starkov A; Brookes PS; Ten VS
    Pediatr Res; 2018 Feb; 83(2):491-497. PubMed ID: 29211056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of superoxide anion generation in intact mitochondria in the presence of lucigenin and cyanide.
    Yurkov IS; Kruglov AG; Evtodienko YV; Yaguzhinsky LS
    Biochemistry (Mosc); 2003 Dec; 68(12):1349-59. PubMed ID: 14756632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive oxygen species are generated by the respiratory complex II--evidence for lack of contribution of the reverse electron flow in complex I.
    Moreno-Sánchez R; Hernández-Esquivel L; Rivero-Segura NA; Marín-Hernández A; Neuzil J; Ralph SJ; Rodríguez-Enríquez S
    FEBS J; 2013 Feb; 280(3):927-38. PubMed ID: 23206332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxaloacetic acid mediates ADP-dependent inhibition of mitochondrial complex II-driven respiration.
    Fink BD; Bai F; Yu L; Sheldon RD; Sharma A; Taylor EB; Sivitz WI
    J Biol Chem; 2018 Dec; 293(51):19932-19941. PubMed ID: 30385511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.