These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 30582767)

  • 1. Rigidity and flexibility characteristics of DD[E/D]-transposases Mos1 and Sleeping Beauty.
    Singer CM; Joy D; Jacobs DJ; Nesmelova IV
    Proteins; 2019 Apr; 87(4):313-325. PubMed ID: 30582767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DDE transposases: Structural similarity and diversity.
    Nesmelova IV; Hackett PB
    Adv Drug Deliv Rev; 2010 Sep; 62(12):1187-95. PubMed ID: 20615441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sleeping Beauty transposase structure allows rational design of hyperactive variants for genetic engineering.
    Voigt F; Wiedemann L; Zuliani C; Querques I; Sebe A; Mátés L; Izsvák Z; Ivics Z; Barabas O
    Nat Commun; 2016 Mar; 7():11126. PubMed ID: 27025571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR structural analysis of Sleeping Beauty transposase binding to DNA.
    Carpentier CE; Schreifels JM; Aronovich EL; Carlson DF; Hackett PB; Nesmelova IV
    Protein Sci; 2014 Jan; 23(1):23-33. PubMed ID: 24243759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution conformations of early intermediates in Mos1 transposition.
    Cuypers MG; Trubitsyna M; Callow P; Forsyth VT; Richardson JM
    Nucleic Acids Res; 2013 Feb; 41(3):2020-33. PubMed ID: 23262225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of Mos1 transposition: insights from structural analysis.
    Richardson JM; Dawson A; O'Hagan N; Taylor P; Finnegan DJ; Walkinshaw MD
    EMBO J; 2006 Mar; 25(6):1324-34. PubMed ID: 16511570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transposase-transposase interactions in MOS1 complexes: a biochemical approach.
    Carpentier G; Jaillet J; Pflieger A; Adet J; Renault S; Augé-Gouillou C
    J Mol Biol; 2011 Jan; 405(4):892-908. PubMed ID: 21110982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR solution structure of the RED subdomain of the Sleeping Beauty transposase.
    Konnova TA; Singer CM; Nesmelova IV
    Protein Sci; 2017 Jun; 26(6):1171-1181. PubMed ID: 28345263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular architecture of the Mos1 paired-end complex: the structural basis of DNA transposition in a eukaryote.
    Richardson JM; Colloms SD; Finnegan DJ; Walkinshaw MD
    Cell; 2009 Sep; 138(6):1096-108. PubMed ID: 19766564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA-binding activity and subunit interaction of the mariner transposase.
    Zhang L; Dawson A; Finnegan DJ
    Nucleic Acids Res; 2001 Sep; 29(17):3566-75. PubMed ID: 11522826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A bend, flip and trap mechanism for transposon integration.
    Morris ER; Grey H; McKenzie G; Jones AC; Richardson JM
    Elife; 2016 May; 5():. PubMed ID: 27223327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Presence of a characteristic D-D-E motif in IS1 transposase.
    Ohta S; Tsuchida K; Choi S; Sekine Y; Shiga Y; Ohtsubo E
    J Bacteriol; 2002 Nov; 184(22):6146-54. PubMed ID: 12399484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. THAP9 Transposase Cleaves DNA via Conserved Acidic Residues in an RNaseH-Like Domain.
    Sharma V; Thakore P; Majumdar S
    Cells; 2021 May; 10(6):. PubMed ID: 34072453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural role of the flanking DNA in mariner transposon excision.
    Dornan J; Grey H; Richardson JM
    Nucleic Acids Res; 2015 Feb; 43(4):2424-32. PubMed ID: 25662605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Basis for the Inverted Repeat Preferences of mariner Transposases.
    Trubitsyna M; Grey H; Houston DR; Finnegan DJ; Richardson JM
    J Biol Chem; 2015 May; 290(21):13531-40. PubMed ID: 25869132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of a bifunctional, paired-like DNA-binding domain and a transpositional enhancer in Sleeping Beauty transposition.
    Izsvák Z; Khare D; Behlke J; Heinemann U; Plasterk RH; Ivics Z
    J Biol Chem; 2002 Sep; 277(37):34581-8. PubMed ID: 12082109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defining functional regions of the IS903 transposase.
    Tavakoli NP; DeVost J; Derbyshire KM
    J Mol Biol; 1997 Dec; 274(4):491-504. PubMed ID: 9417930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of DNA Transposition.
    Hickman AB; Dyda F
    Microbiol Spectr; 2015 Apr; 3(2):MDNA3-0034-2014. PubMed ID: 26104718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells.
    Wu SC; Meir YJ; Coates CJ; Handler AM; Pelczar P; Moisyadi S; Kaminski JM
    Proc Natl Acad Sci U S A; 2006 Oct; 103(41):15008-13. PubMed ID: 17005721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The folding of the specific DNA recognition subdomain of the sleeping beauty transposase is temperature-dependent and is required for its binding to the transposon DNA.
    Leighton GO; Konnova TA; Idiyatullin B; Hurr SH; Zuev YF; Nesmelova IV
    PLoS One; 2014; 9(11):e112114. PubMed ID: 25375127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.