These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 30582793)

  • 1. Single-Step Electrospun Ir/IrO
    Moon S; Cho YB; Yu A; Kim MH; Lee C; Lee Y
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):1979-1987. PubMed ID: 30582793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanotubular Iridium-Cobalt Mixed Oxide Crystalline Architectures Inherited from Cobalt Oxide for Highly Efficient Oxygen Evolution Reaction Catalysis.
    Yu A; Lee C; Kim MH; Lee Y
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35057-35066. PubMed ID: 28920424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions.
    Lee Y; Suntivich J; May KJ; Perry EE; Shao-Horn Y
    J Phys Chem Lett; 2012 Feb; 3(3):399-404. PubMed ID: 26285858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design-controlled synthesis of IrO
    de Freitas IC; Parreira LS; Barbosa ECM; Novaes BA; Mou T; Alves TV; Quiroz J; Wang YC; Slater TJ; Thomas A; Wang B; Haigh SJ; Camargo PHC
    Nanoscale; 2020 Jun; 12(23):12281-12291. PubMed ID: 32319490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen Evolution Reaction at IrO
    Touni A; Papaderakis A; Karfaridis D; Vourlias G; Sotiropoulos S
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31159428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fundamental Study of Facile and Stable Hydrogen Evolution Reaction at Electrospun Ir and Ru Mixed Oxide Nanofibers.
    Cho YB; Yu A; Lee C; Kim MH; Lee Y
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):541-549. PubMed ID: 29250950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lanthanides Regulated the Amorphization-Crystallization of IrO
    Ma C; Sun W; Qamar Zaman W; Zhou Z; Zhang H; Shen Q; Cao L; Yang J
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):34980-34989. PubMed ID: 32658446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Ir-OOOO-Ir transition state and the mechanism of the oxygen evolution reaction on IrO
    Binninger T; Doublet ML
    Energy Environ Sci; 2022 Jun; 15(6):2519-2528. PubMed ID: 36204599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boosted Performance of Ir Species by Employing TiN as the Support toward Oxygen Evolution Reaction.
    Li G; Li K; Yang L; Chang J; Ma R; Wu Z; Ge J; Liu C; Xing W
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38117-38124. PubMed ID: 30335932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Supported Hierarchical IrO
    Liu J; Wang Z; Su K; Xv D; Zhao D; Li J; Tong H; Qian D; Yang C; Lu Z
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):25854-25862. PubMed ID: 31256582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrous cobalt-iridium oxide two-dimensional nanoframes: insights into activity and stability of bimetallic acidic oxygen evolution electrocatalysts.
    Ying Y; Godínez Salomón JF; Lartundo-Rojas L; Moreno A; Meyer R; Damin CA; Rhodes CP
    Nanoscale Adv; 2021 Apr; 3(7):1976-1996. PubMed ID: 36133093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Catalytic Electrochemical Oxidation of Carbon Monoxide on Iridium Nanotubes: Amperometric Sensing of Carbon Monoxide.
    Yu A; Kwon T; Lee C; Lee Y
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32531899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-Coordinate Iridium Oxide Confined on Graphitic Carbon Nitride for Highly Efficient Oxygen Evolution.
    Chen J; Cui P; Zhao G; Rui K; Lao M; Chen Y; Zheng X; Jiang Y; Pan H; Dou SX; Sun W
    Angew Chem Int Ed Engl; 2019 Sep; 58(36):12540-12544. PubMed ID: 31318124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrodeposition of High-Surface-Area IrO
    Park YJ; Lee J; Park YS; Yang J; Jang MJ; Jeong J; Choe S; Lee JW; Kwon JD; Choi SM
    Front Chem; 2020; 8():593272. PubMed ID: 33195098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Performance Supported Iridium Oxohydroxide Water Oxidation Electrocatalysts.
    Massué C; Pfeifer V; Huang X; Noack J; Tarasov A; Cap S; Schlögl R
    ChemSusChem; 2017 May; 10(9):1943-1957. PubMed ID: 28164475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational Manipulation of IrO
    Sun W; Zhou Z; Zaman WQ; Cao LM; Yang J
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):41855-41862. PubMed ID: 29148711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IrO
    Yan T; Chen S; Sun W; Liu Y; Pan L; Shi C; Zhang X; Huang ZF; Zou JJ
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):6912-6922. PubMed ID: 36718123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of Active Sites via Crystal Phase, Composition, and Morphology for Efficient Low-Iridium Oxygen Evolution Catalysts.
    Chen H; Shi L; Liang X; Wang L; Asefa T; Zou X
    Angew Chem Int Ed Engl; 2020 Oct; 59(44):19654-19658. PubMed ID: 32485084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhenium Suppresses Iridium (IV) Oxide Crystallization and Enables Efficient, Stable Electrochemical Water Oxidation.
    Huo W; Zhou X; Jin Y; Xie C; Yang S; Qian J; Cai D; Ge Y; Qu Y; Nie H; Yang Z
    Small; 2023 May; 19(19):e2207847. PubMed ID: 36772894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activating Inert, Nonprecious Perovskites with Iridium Dopants for Efficient Oxygen Evolution Reaction under Acidic Conditions.
    Liang X; Shi L; Liu Y; Chen H; Si R; Yan W; Zhang Q; Li GD; Yang L; Zou X
    Angew Chem Int Ed Engl; 2019 Jun; 58(23):7631-7635. PubMed ID: 30775830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.