These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30582887)

  • 1. Recalibration of the Grunow-Finke Assessment Tool to Improve Performance in Detecting Unnatural Epidemics.
    Chen X; Chughtai AA; MacIntyre CR
    Risk Anal; 2019 Jul; 39(7):1465-1475. PubMed ID: 30582887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discernment between deliberate and natural infectious disease outbreaks.
    Dembek ZF; Kortepeter MG; Pavlin JA
    Epidemiol Infect; 2007 Apr; 135(3):353-71. PubMed ID: 16893485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of a Risk Analysis Tool to Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Outbreak in Saudi Arabia.
    Chen X; Chughtai AA; MacIntyre CR
    Risk Anal; 2020 May; 40(5):915-925. PubMed ID: 32170774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Systematic Review of Risk Analysis Tools for Differentiating Unnatural From Natural Epidemics.
    Chen X; Chughtai AA; MacIntyre CR
    Mil Med; 2017 Nov; 182(11):e1827-e1835. PubMed ID: 29087849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using a grey relational analysis in an improved Grunow-Finke assessment tool to detect unnatural epidemics.
    Lin M; Chen H; Jia L; Yang M; Qiu S; Song H; Wang L; Zheng T
    Risk Anal; 2023 Jul; 43(7):1508-1517. PubMed ID: 36100578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Syndromic surveillance and bioterrorism-related epidemics.
    Buehler JW; Berkelman RL; Hartley DM; Peters CJ
    Emerg Infect Dis; 2003 Oct; 9(10):1197-204. PubMed ID: 14609452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unusual epidemic events: a new method of early orientation and differentiation between natural and deliberate epidemics.
    Radosavljevic V; Belojevic G
    Public Health; 2012 Jan; 126(1):77-81. PubMed ID: 22136700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of disease outbreaks by the use of oral manifestations.
    Torres-Urquidy MH; Wallstrom G; Schleyer TK
    J Dent Res; 2009 Jan; 88(1):89-94. PubMed ID: 19131324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Overview of Zoonotic Disease Outbreaks and its Forensic Management Over Time.
    Serrano I; Gomes D; Ramilo D; Rebelo MT; da Fonseca IP; Moreira A; Oliveira M
    J Forensic Sci; 2019 Sep; 64(5):1304-1311. PubMed ID: 30801721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Epidemic occurrence of alimentary bacterial infections in the Czech Republic 1979-1989].
    Srámová H; Dĕdicová D; Petrás P; Benes C
    Cesk Epidemiol Mikrobiol Imunol; 1991 Mar; 40(2):74-84. PubMed ID: 1827364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using laboratory-based surveillance data for prevention: an algorithm for detecting Salmonella outbreaks.
    Hutwagner LC; Maloney EK; Bean NH; Slutsker L; Martin SM
    Emerg Infect Dis; 1997; 3(3):395-400. PubMed ID: 9284390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating Google Flu Trends in Latin America: Important Lessons for the Next Phase of Digital Disease Detection.
    Pollett S; Boscardin WJ; Azziz-Baumgartner E; Tinoco YO; Soto G; Romero C; Kok J; Biggerstaff M; Viboud C; Rutherford GW
    Clin Infect Dis; 2017 Jan; 64(1):34-41. PubMed ID: 27678084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Google Searches and Detection of Conjunctivitis Epidemics Worldwide.
    Deiner MS; McLeod SD; Wong J; Chodosh J; Lietman TM; Porco TC
    Ophthalmology; 2019 Sep; 126(9):1219-1229. PubMed ID: 30981915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Risk Analysis Approach to Prioritizing Epidemics: Ebola Virus Disease in West Africa as a Case Study.
    Ajisegiri WS; Chughtai AA; MacIntyre CR
    Risk Anal; 2018 Mar; 38(3):429-441. PubMed ID: 28810081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lessons from the West Nile viral encephalitis outbreak in New York City, 1999: implications for bioterrorism preparedness.
    Fine A; Layton M
    Clin Infect Dis; 2001 Jan; 32(2):277-82. PubMed ID: 11170918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing early outbreak detection algorithms based on their optimized parameter values.
    Wang X; Zeng D; Seale H; Li S; Cheng H; Luan R; He X; Pang X; Dou X; Wang Q
    J Biomed Inform; 2010 Feb; 43(1):97-103. PubMed ID: 19683069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epidemic features affecting the performance of outbreak detection algorithms.
    Kuang J; Yang WZ; Zhou DL; Li ZJ; Lan YJ
    BMC Public Health; 2012 Jun; 12():418. PubMed ID: 22682110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Syndromic surveillance.
    Dembek ZF; Cochrane DG; Pavlin JA
    Emerg Infect Dis; 2004 Jul; 10(7):1333-4. PubMed ID: 15338541
    [No Abstract]   [Full Text] [Related]  

  • 19. The 2012 West Nile encephalitis epidemic in Dallas, Texas.
    Chung WM; Buseman CM; Joyner SN; Hughes SM; Fomby TB; Luby JP; Haley RW
    JAMA; 2013 Jul; 310(3):297-307. PubMed ID: 23860988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using networks to combine "big data" and traditional surveillance to improve influenza predictions.
    Davidson MW; Haim DA; Radin JM
    Sci Rep; 2015 Jan; 5():8154. PubMed ID: 25634021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.