These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30583046)

  • 1. Potential mechanism of nitrite degradation by Lactobacillus fermentum RC4 based on proteomic analysis.
    Zeng X; Pan Q; Guo Y; Wu Z; Sun Y; Dang Y; Cao J; He J; Pan D
    J Proteomics; 2019 Mar; 194():70-78. PubMed ID: 30583046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptomic Responses to Nitrite Degradation by
    Shi J; Che J; Sun X; Zeng X; Du Q; Guo Y; Wu Z; Pan D
    J Agric Food Chem; 2023 Sep; 71(35):13156-13164. PubMed ID: 37624070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect and potential mechanism of nitrite reductase B on nitrite degradation by
    Fan Q; Xia C; Zeng X; Wu Z; Guo Y; Du Q; Tu M; Liu X; Pan D
    Curr Res Food Sci; 2024; 8():100749. PubMed ID: 38694558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-free quantitative proteomic analysis of Lactobacillus fermentum NCDC 400 during bile salt exposure.
    Kaur G; Ali SA; Kumar S; Mohanty AK; Behare P
    J Proteomics; 2017 Sep; 167():36-45. PubMed ID: 28802582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolomics Analysis for Nitrite Degradation by the Metabolites of
    Xia C; Tian Q; Kong L; Sun X; Shi J; Zeng X; Pan D
    Foods; 2022 Mar; 11(7):. PubMed ID: 35407096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomics fingerprints of systemic mechanisms of adaptation to bile in Lactobacillus fermentum.
    Ali SA; Singh P; Tomar SK; Mohanty AK; Behare P
    J Proteomics; 2020 Feb; 213():103600. PubMed ID: 31805390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the viability of powdered Lactobacillus fermentum Lf01 with complex lyoprotectants by maintaining cell membrane integrity and regulating related genes.
    Cheng Z; He X; Wu Z; Weng P
    J Food Biochem; 2022 Aug; 46(8):e14181. PubMed ID: 35393671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution mass spectrometry-based global proteomic analysis of probiotic strains Lactobacillus fermentum NCDC 400 and RS2.
    Pragya P; Kaur G; Ali SA; Bhatla S; Rawat P; Lule V; Kumar S; Mohanty AK; Behare P
    J Proteomics; 2017 Jan; 152():121-130. PubMed ID: 27989939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lyophilized alginate-based microspheres containing Lactobacillus fermentum D12, an exopolysaccharides producer, contribute to the strain's functionality in vitro.
    Butorac K; Novak J; Bellich B; Terán LC; Banić M; Leboš Pavunc A; Zjalić S; Cescutti P; Šušković J; Kos B
    Microb Cell Fact; 2021 Apr; 20(1):85. PubMed ID: 33865380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probiotic attributes of Lactobacillus fermentum isolated from human feces and dairy products.
    Archer AC; Halami PM
    Appl Microbiol Biotechnol; 2015 Oct; 99(19):8113-23. PubMed ID: 26004804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative genome analysis of the candidate functional starter culture strains Lactobacillus fermentum 222 and Lactobacillus plantarum 80 for controlled cocoa bean fermentation processes.
    Illeghems K; De Vuyst L; Weckx S
    BMC Genomics; 2015 Oct; 16():766. PubMed ID: 26459565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Lactobacillus fermentum HL57 and Pediococcus acidilactici SP979 as potential probiotics in the manufacture of traditional Iberian dry-fermented sausages.
    Ruiz-Moyano S; Martín A; Benito MJ; Hernández A; Casquete R; de Guia Córdoba M
    Food Microbiol; 2011 Aug; 28(5):839-47. PubMed ID: 21569925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative genomics-based probiotic relevance of Limosilactobacillus fermentum KUB-D18.
    Phujumpa P; Muangham S; Jatuponwiphat T; Koffas M; Nakphaichit M; Vongsangnak W
    Gene; 2022 Oct; 840():146747. PubMed ID: 35863716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo safety assessment of Lactobacillus fermentum strains, evaluation of their cholesterol-lowering ability and intestinal microbial modulation.
    Thumu SCR; Halami PM
    J Sci Food Agric; 2020 Jan; 100(2):705-713. PubMed ID: 31599967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complete glutathione system in probiotic Lactobacillus fermentum ME-3.
    Kullisaar T; Songisepp E; Aunapuu M; Kilk K; Arend A; Mikelsaar M; Rehema A; Zilmer M
    Prikl Biokhim Mikrobiol; 2010; 46(5):527-31. PubMed ID: 21058502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative genomics of Lactobacillus fermentum suggests a free-living lifestyle of this lactic acid bacterial species.
    Verce M; De Vuyst L; Weckx S
    Food Microbiol; 2020 Aug; 89():103448. PubMed ID: 32138996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Yersinia enterocolitica and Lactobacillus fermentum induces differential cellular and behavioral responses during diclofenac biotransformation in rat gut.
    Ahlawat S; Shankar A; Vandna ; Mohan H; Sharma KK
    Toxicol Appl Pharmacol; 2021 Nov; 431():115741. PubMed ID: 34619158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of a safe cured meat with low residual nitrite using nitrite substitutes.
    Huang L; Zeng X; Sun Z; Wu A; He J; Dang Y; Pan D
    Meat Sci; 2020 Apr; 162():108027. PubMed ID: 31838338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional Profile Evaluation of
    Melo TA; Dos Santos TF; Pereira LR; Passos HM; Rezende RP; Romano CC
    Biomed Res Int; 2017; 2017():5165916. PubMed ID: 28808659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro adhesion and anti-inflammatory properties of native Lactobacillus fermentum and Lactobacillus delbrueckii spp.
    Archer AC; Kurrey NK; Halami PM
    J Appl Microbiol; 2018 Jul; 125(1):243-256. PubMed ID: 29537703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.