These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
419 related articles for article (PubMed ID: 30583217)
1. An injectable enzymatically crosslinked tyramine-modified carboxymethyl chitin hydrogel for biomedical applications. Bi B; Liu H; Kang W; Zhuo R; Jiang X Colloids Surf B Biointerfaces; 2019 Mar; 175():614-624. PubMed ID: 30583217 [TBL] [Abstract][Full Text] [Related]
2. Thermosensitive injectable in-situ forming carboxymethyl chitin hydrogel for three-dimensional cell culture. Liu H; Liu J; Qi C; Fang Y; Zhang L; Zhuo R; Jiang X Acta Biomater; 2016 Apr; 35():228-37. PubMed ID: 26911882 [TBL] [Abstract][Full Text] [Related]
3. Photocrosslinked methacrylated carboxymethyl chitin hydrogels with tunable degradation and mechanical behavior. Kang W; Bi B; Zhuo R; Jiang X Carbohydr Polym; 2017 Mar; 160():18-25. PubMed ID: 28115092 [TBL] [Abstract][Full Text] [Related]
4. In-situ forming thermosensitive hydroxypropyl chitin-based hydrogel crosslinked by Diels-Alder reaction for three dimensional cell culture. Bi B; Ma M; Lv S; Zhuo R; Jiang X Carbohydr Polym; 2019 May; 212():368-377. PubMed ID: 30832869 [TBL] [Abstract][Full Text] [Related]
5. In situ forming hydrogels based on tyramine conjugated 4-Arm-PPO-PEO via enzymatic oxidative reaction. Park KM; Shin YM; Joung YK; Shin H; Park KD Biomacromolecules; 2010 Mar; 11(3):706-12. PubMed ID: 20121075 [TBL] [Abstract][Full Text] [Related]
6. Injectable hydrogel systems crosslinked by horseradish peroxidase. Lee F; Bae KH; Kurisawa M Biomed Mater; 2015 Dec; 11(1):014101. PubMed ID: 26694014 [TBL] [Abstract][Full Text] [Related]
7. Horseradish peroxidase-catalysed in situ-forming hydrogels for tissue-engineering applications. Bae JW; Choi JH; Lee Y; Park KD J Tissue Eng Regen Med; 2015 Nov; 9(11):1225-32. PubMed ID: 24916126 [TBL] [Abstract][Full Text] [Related]
8. Peroxidase-immobilized porous silica particles for in situ formation of peroxidase-free hydrogels with attenuated immune responses. Li L; Bae KH; Ng S; Yamashita A; Kurisawa M Acta Biomater; 2018 Nov; 81():103-114. PubMed ID: 30273747 [TBL] [Abstract][Full Text] [Related]
9. Thermosensitive and photocrosslinkable hydroxypropyl chitin-based hydrogels for biomedical applications. Yuan M; Bi B; Huang J; Zhuo R; Jiang X Carbohydr Polym; 2018 Jul; 192():10-18. PubMed ID: 29691000 [TBL] [Abstract][Full Text] [Related]
10. Enzyme-mediated hyaluronic acid-tyramine hydrogels for the propagation of human embryonic stem cells in 3D. Xu K; Narayanan K; Lee F; Bae KH; Gao S; Kurisawa M Acta Biomater; 2015 Sep; 24():159-71. PubMed ID: 26112373 [TBL] [Abstract][Full Text] [Related]
11. Injectable glycopolypeptide hydrogels as biomimetic scaffolds for cartilage tissue engineering. Ren K; He C; Xiao C; Li G; Chen X Biomaterials; 2015 May; 51():238-249. PubMed ID: 25771014 [TBL] [Abstract][Full Text] [Related]
12. Tetronic-grafted chitosan hydrogel as an injectable and biocompatible scaffold for biomedical applications. Nguyen DH; Tran NQ; Nguyen CK J Biomater Sci Polym Ed; 2013; 24(14):1636-48. PubMed ID: 23607763 [TBL] [Abstract][Full Text] [Related]
13. Self-crosslinking effect of chitosan and gelatin on alginate based hydrogels: Injectable in situ forming scaffolds. Naghizadeh Z; Karkhaneh A; Khojasteh A Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():256-264. PubMed ID: 29752097 [TBL] [Abstract][Full Text] [Related]
14. Synthesis and characterization of an in situ forming hydrogel using tyramine conjugated high methoxyl gum tragacanth. Tavakol M; Vasheghani-Farahani E; Mohammadifar MA; Soleimani M; Hashemi-Najafabadi S J Biomater Appl; 2016 Feb; 30(7):1016-25. PubMed ID: 26553882 [TBL] [Abstract][Full Text] [Related]
15. An injectable hyaluronic acid-tyramine hydrogel system for protein delivery. Lee F; Chung JE; Kurisawa M J Control Release; 2009 Mar; 134(3):186-93. PubMed ID: 19121348 [TBL] [Abstract][Full Text] [Related]
16. Injectable hydroxypropyl chitin hydrogels embedded with carboxymethyl chitin microspheres prepared via a solvent-free process for drug delivery. Zheng J; Lv S; Zhong Y; Jiang X J Biomater Sci Polym Ed; 2021 Aug; 32(12):1564-1583. PubMed ID: 33957063 [TBL] [Abstract][Full Text] [Related]
17. Dual-enzymatically crosslinked and injectable hyaluronic acid hydrogels for potential application in tissue engineering. Wang L; Li J; Zhang D; Ma S; Zhang J; Gao F; Guan F; Yao M RSC Adv; 2020 Jan; 10(5):2870-2876. PubMed ID: 35496102 [TBL] [Abstract][Full Text] [Related]
18. An injectable enzymatically crosslinked hyaluronic acid- hydrogel system with independent tuning of mechanical strength and gelation rate. Lee F; Chung JE; Kurisawa M Soft Matter; 2008 Mar; 4(4):880-887. PubMed ID: 32907194 [TBL] [Abstract][Full Text] [Related]
19. In situ SVVYGLR peptide conjugation into injectable gelatin-poly(ethylene glycol)-tyramine hydrogel via enzyme-mediated reaction for enhancement of endothelial cell activity and neo-vascularization. Park KM; Lee Y; Son JY; Bae JW; Park KD Bioconjug Chem; 2012 Oct; 23(10):2042-50. PubMed ID: 22998168 [TBL] [Abstract][Full Text] [Related]
20. Dual-crosslinked methylcellulose hydrogels for 3D bioprinting applications. Shin JY; Yeo YH; Jeong JE; Park SA; Park WH Carbohydr Polym; 2020 Jun; 238():116192. PubMed ID: 32299570 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]