These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 30583268)
41. Direct qPCR quantification using the Quantifiler(®) Trio DNA quantification kit. Liu JY Forensic Sci Int Genet; 2014 Nov; 13():10-9. PubMed ID: 25047573 [TBL] [Abstract][Full Text] [Related]
42. The Influence of Selected Fingerprint Enhancement Techniques on Forensic DNA Typing of Epithelial Cells Deposited on Porous Surfaces. Tsai LC; Lee CC; Chen CC; Lee JC; Wang SM; Huang NE; Linacre A; Hsieh HM J Forensic Sci; 2016 Jan; 61 Suppl 1():S221-5. PubMed ID: 26259019 [TBL] [Abstract][Full Text] [Related]
43. Direct Y-STR amplification of body fluids deposited on commonly found crime scene substrates. Dargay A; Roy R J Forensic Leg Med; 2016 Apr; 39():50-60. PubMed ID: 26854850 [TBL] [Abstract][Full Text] [Related]
44. MALDI MSI Separation of Same Donor's Fingermarks Based on Time of Deposition-A Proof-of-Concept Study. Frisch K; Nielsen KL; Francese S Molecules; 2023 Mar; 28(6):. PubMed ID: 36985735 [TBL] [Abstract][Full Text] [Related]
45. A comparative study of different laboratory storage conditions for enhanced DNA analysis of crime scene soil-blood mixed sample. Badu-Boateng A; Twumasi P; Salifu SP; Afrifah KA Forensic Sci Int; 2018 Nov; 292():97-109. PubMed ID: 30292937 [TBL] [Abstract][Full Text] [Related]
46. A new methodology for the visualization of latent fingermarks on the sticky side of adhesive tapes using novel fluorescent dyes. Barros HL; Stefani V Forensic Sci Int; 2016 Jun; 263():83-91. PubMed ID: 27084980 [TBL] [Abstract][Full Text] [Related]
47. Exposing latent fingermarks on problematic metal surfaces using time of flight secondary ion mass spectroscopy. Thandauthapani TD; Reeve AJ; Long AS; Turner IJ; Sharp JS Sci Justice; 2018 Nov; 58(6):405-414. PubMed ID: 30446069 [TBL] [Abstract][Full Text] [Related]
48. Touch DNA-The prospect of DNA profiles from cables. Lim S; Subhani Z; Daniel B; Frascione N Sci Justice; 2016 May; 56(3):210-215. PubMed ID: 27162019 [TBL] [Abstract][Full Text] [Related]
49. Age Estimation with DNA: From Forensic DNA Fingerprinting to Forensic (Epi)Genomics: A Mini-Review. Parson W Gerontology; 2018; 64(4):326-332. PubMed ID: 29393215 [TBL] [Abstract][Full Text] [Related]
50. A large-scale dataset of single and mixed-source short tandem repeat profiles to inform human identification strategies: PROVEDIt. Alfonse LE; Garrett AD; Lun DS; Duffy KR; Grgicak CM Forensic Sci Int Genet; 2018 Jan; 32():62-70. PubMed ID: 29091906 [TBL] [Abstract][Full Text] [Related]
51. The molecular characterization of a depurinated trial DNA sample can be a model to understand the reliability of the results in forensic genetics. Fattorini P; Previderè C; Sorçaburu-Cigliero S; Marrubini G; Alù M; Barbaro AM; Carnevali E; Carracedo A; Casarino L; Consoloni L; Corato S; Domenici R; Fabbri M; Giardina E; Grignani P; Baldassarra SL; Moratti M; Nicolin V; Pelotti S; Piccinini A; Pitacco P; Plizza L; Resta N; Ricci U; Robino C; Salvaderi L; Scarnicci F; Schneider PM; Seidita G; Trizzino L; Turchi C; Turrina S; Vatta P; Vecchiotti C; Verzeletti A; De Stefano F Electrophoresis; 2014 Nov; 35(21-22):3134-44. PubMed ID: 25176610 [TBL] [Abstract][Full Text] [Related]
52. Detection of latent fingermarks and cells on paper. Khuu A; Spindler X; Roux C Forensic Sci Int; 2020 Apr; 309():110185. PubMed ID: 32088536 [TBL] [Abstract][Full Text] [Related]
53. The Reed-Stanton press rig for the generation of reproducible fingermarks: Towards a standardised methodology for fingermark research. Reed H; Stanton A; Wheat J; Kelley J; Davis L; Rao W; Smith A; Owen D; Francese S Sci Justice; 2016 Jan; 56(1):9-17. PubMed ID: 26746821 [TBL] [Abstract][Full Text] [Related]
54. Desorption Electrospray Ionization Mass Spectrometry Imaging of Powder-Treated Fingermarks on Forensic Gelatin Lifters and its Application for Separating Overlapping Fingermarks. Frisch K; Nielsen KL; Hasselstro M JRB; Fink R; Rasmussen SV; Johannsen M Anal Chem; 2024 Jul; ():. PubMed ID: 39028891 [TBL] [Abstract][Full Text] [Related]
55. Direct-STR typing from presumptively-tested and untreated body fluids. Thanakiatkrai P; Raham K; Pradutkanchana J; Sotthibandhu S; Kitpipit T Forensic Sci Int Genet; 2017 Sep; 30():1-9. PubMed ID: 28605649 [TBL] [Abstract][Full Text] [Related]
56. Threat mail and forensic science: DNA profiling from items of evidence after treatment with DFO. Zamir A; Oz C; Geller B J Forensic Sci; 2000 Mar; 45(2):445-6. PubMed ID: 10782971 [TBL] [Abstract][Full Text] [Related]
57. The transfer and persistence of metals in latent fingermarks. Boseley RE; Howard DL; Hackett MJ; Lewis SW Analyst; 2022 Jan; 147(3):387-397. PubMed ID: 34989361 [TBL] [Abstract][Full Text] [Related]
58. DNA Profiles from Fingerprint Lifts-Enhancing the Evidential Value of Fingermarks Through Successful DNA Typing. Subhani Z; Daniel B; Frascione N J Forensic Sci; 2019 Jan; 64(1):201-206. PubMed ID: 29800489 [TBL] [Abstract][Full Text] [Related]
59. Development of fingermark on the surface of fired cartridge casing using amino acid sensitive reagents: Change of viewpoint. Hong S; Han A Forensic Sci Int; 2016 Sep; 266():86-90. PubMed ID: 27235594 [TBL] [Abstract][Full Text] [Related]
60. DNA persistence of bite marks on food and its relevance for STR typing. Pfeifer CM; Gass A; Klein-Unseld R; Wiegand P Int J Legal Med; 2017 Sep; 131(5):1221-1228. PubMed ID: 28653154 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]