These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 30583366)
1. Prediction of black, immature and sour defective beans in coffee blends by using Laser-Induced Breakdown Spectroscopy. Silva TV; Milori DMBP; Neto JAG; Ferreira EJ; Ferreira EC Food Chem; 2019 Apr; 278():223-227. PubMed ID: 30583366 [TBL] [Abstract][Full Text] [Related]
2. Prediction of specialty coffee cup quality based on near infrared spectra of green coffee beans. Tolessa K; Rademaker M; De Baets B; Boeckx P Talanta; 2016 Apr; 150():367-74. PubMed ID: 26838420 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of green coffee beans quality using near infrared spectroscopy: a quantitative approach. Santos JR; Sarraguça MC; Rangel AO; Lopes JA Food Chem; 2012 Dec; 135(3):1828-35. PubMed ID: 22953929 [TBL] [Abstract][Full Text] [Related]
4. Steam pressure treatment of defective Coffea canephora beans improves the volatile profile and sensory acceptance of roasted coffee blends. Kalschne DL; Viegas MC; De Conti AJ; Corso MP; Benassi MT Food Res Int; 2018 Mar; 105():393-402. PubMed ID: 29433228 [TBL] [Abstract][Full Text] [Related]
5. Quantitative assessment of specific defects in roasted ground coffee via infrared-photoacoustic spectroscopy. Dias RCE; Valderrama P; Março PH; Dos Santos Scholz MB; Edelmann M; Yeretzian C Food Chem; 2018 Jul; 255():132-138. PubMed ID: 29571458 [TBL] [Abstract][Full Text] [Related]
6. Impacts of quaker beans over sensory characteristics and volatile composition of specialty natural coffees. Rabelo MHS; Borém FM; Lima RR; Alves APC; Pinheiro ACM; Ribeiro DE; Santos CMD; Pereira RGFA Food Chem; 2021 Apr; 342():128304. PubMed ID: 33067049 [TBL] [Abstract][Full Text] [Related]
7. Coffee arabica adulteration: Detection of wheat, corn and chickpea. Sezer B; Apaydin H; Bilge G; Boyaci IH Food Chem; 2018 Oct; 264():142-148. PubMed ID: 29853358 [TBL] [Abstract][Full Text] [Related]
8. Quantification of Coffea arabica and Coffea canephora var. robusta in roasted and ground coffee blends. Cagliani LR; Pellegrino G; Giugno G; Consonni R Talanta; 2013 Mar; 106():169-73. PubMed ID: 23598112 [TBL] [Abstract][Full Text] [Related]
9. Rapid authentication of coffee blends and quantification of 16-O-methylcafestol in roasted coffee beans by nuclear magnetic resonance. Schievano E; Finotello C; De Angelis E; Mammi S; Navarini L J Agric Food Chem; 2014 Dec; 62(51):12309-14. PubMed ID: 25431971 [TBL] [Abstract][Full Text] [Related]
10. Discrimination of green arabica and Robusta coffee beans by Raman spectroscopy. Keidel A; von Stetten D; Rodrigues C; Máguas C; Hildebrandt P J Agric Food Chem; 2010 Nov; 58(21):11187-92. PubMed ID: 20942389 [TBL] [Abstract][Full Text] [Related]
11. Homostachydrine (pipecolic acid betaine) as authentication marker of roasted blends of Coffea arabica and Coffea canephora (Robusta) beans. Servillo L; Giovane A; Casale R; Cautela D; D'Onofrio N; Balestrieri ML; Castaldo D Food Chem; 2016 Aug; 205():52-7. PubMed ID: 27006213 [TBL] [Abstract][Full Text] [Related]
13. Overview on the mechanisms of coffee germination and fermentation and their significance for coffee and coffee beverage quality. Waters DM; Arendt EK; Moroni AV Crit Rev Food Sci Nutr; 2017 Jan; 57(2):259-274. PubMed ID: 26020134 [TBL] [Abstract][Full Text] [Related]
14. Physicochemical characteristics of green coffee: comparison of graded and defective beans. Ramalakshmi K; Kubra IR; Rao LJ J Food Sci; 2007 Jun; 72(5):S333-7. PubMed ID: 17995751 [TBL] [Abstract][Full Text] [Related]
15. Fourier transform infrared spectroscopy and near infrared spectroscopy for the quantification of defects in roasted coffees. Craig AP; Franca AS; Oliveira LS; Irudayaraj J; Ileleji K Talanta; 2015 Mar; 134():379-386. PubMed ID: 25618683 [TBL] [Abstract][Full Text] [Related]
16. Detection of micro-toxic elements in commercial coffee brands using optimized dual-pulsed laser-induced spectral analysis spectrometry. Khalil AAI; Labib OA Appl Opt; 2018 Aug; 57(23):6729-6741. PubMed ID: 30129619 [TBL] [Abstract][Full Text] [Related]
17. Identification of 3-methylbutanoyl glycosides in green Coffea arabica beans as causative determinants for the quality of coffee flavors. Iwasa K; Setoyama D; Shimizu H; Seta H; Fujimura Y; Miura D; Wariishi H; Nagai C; Nakahara K J Agric Food Chem; 2015 Apr; 63(14):3742-51. PubMed ID: 25837668 [TBL] [Abstract][Full Text] [Related]
18. Characterization of defective coffee beans and blends differentiation based on Hu GL; Quan CX; Dai HP; Qiu MH Curr Res Food Sci; 2024; 9():100870. PubMed ID: 39403596 [TBL] [Abstract][Full Text] [Related]
19. Melatonin and serotonin profiles in beans of Coffea species. Ramakrishna A; Giridhar P; Sankar KU; Ravishankar GA J Pineal Res; 2012 May; 52(4):470-6. PubMed ID: 22017393 [TBL] [Abstract][Full Text] [Related]
20. Combining mid infrared spectroscopy and paper spray mass spectrometry in a data fusion model to predict the composition of coffee blends. Assis C; Pereira HV; Amador VS; Augusti R; de Oliveira LS; Sena MM Food Chem; 2019 May; 281():71-77. PubMed ID: 30658767 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]