These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 30583493)

  • 1. Two-Parameter Elliptical Fitting Method for Short-Cavity Fiber Fabry⁻Perot Sensor Interrogation.
    Zhang X; Wang W; Chen H; Tang Y; Ma Z; Wang K
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30583493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absolute Single Cavity Length Interrogation of Fiber-Optic Compound Fabry⁻Perot Pressure Sensors Through a White Light Non-Scanning Correlation Method.
    Guo Z; Lv W; Wang W; Chen Q; Zhang X; Chen H; Ma Z
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30959736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Squared peak-to-peak algorithm for the spectral interrogation of short-cavity fiber-optic Fabry-Perot sensors.
    Chen H; Zhang Y; Li Y; Jing X; Yuan S; Zhang X; Wang W; Liu R; Guo Q
    Appl Opt; 2020 Feb; 59(4):1198-1205. PubMed ID: 32225261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Zero-Cross Detection Algorithm for Cavity-Length Interrogation of Fiber-Optic Fabry-Perot Sensors.
    Ma Z; Song Z; Huang X; Guo T; Yuan W; Chen H; Zhang T; Wang W
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31500318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabry⁻Perot Cavity Sensing Probe with High Thermal Stability for an Acoustic Sensor by Structure Compensation.
    Cheng J; Zhou Y; Zou X
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30309042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-speed, large dynamic range spectral domain interrogation of fiber-optic Fabry-Perot interferometric sensors.
    Wong KP; Kim HT; Rajasekaran K; Yazdkhasti A; Sai Sudhakar B; Wang A; Lee SE; Kiger K; Duncan JH; Yu M
    Appl Opt; 2022 Jun; 61(16):4670-4677. PubMed ID: 36255944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Precision Cavity Length Demodulation Method for Fiber-Optic Fabry-Perot Sensors Based on Dual Superluminescent Diodes.
    Zhang W; Yu J; Zhang X; Chen H; Zhang J; Wang W
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Cost, High-Performance Fiber Optic Fabry⁻Perot Sensor for Ultrasonic Wave Detection.
    Li H; Li D; Xiong C; Si W; Fu C; Yuan P; Yu Y
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30669494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quasi-Distributed Active-Mode-Locking Laser Interrogation with Multiple Partially Reflecting Segment Sensors.
    Park CH; Kim GH; Hong SW; Lee HD; Kim CS
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30477260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution interrogation technique for fiber optic extrinsic Fabry-Perot interferometric sensors by the peak-to-peak method.
    Jiang Y
    Appl Opt; 2008 Mar; 47(7):925-32. PubMed ID: 18311264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multimode Fabry⁻Perot Interferometer Probe Based on Vernier Effect for Enhanced Temperature Sensing.
    Gomes AD; Becker M; Dellith J; Zibaii MI; Latifi H; Rothhardt M; Bartelt H; Frazão O
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30678290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-line short cavity Fabry-Perot strain sensor for quasi distributed measurement utilizing standard OTDR.
    Cibula E; Donlagic D
    Opt Express; 2007 Jul; 15(14):8719-30. PubMed ID: 19547207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Sensing Peak Identification Method for Fiber Extrinsic Fabry⁻Perot Interferometric Refractive Index Sensing.
    Yang B; Yang B; Zhang J; Yin Y; Niu Y; Ding M
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30597895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid Fiber Optic Sensor, Based on the Fabry⁻Perot Interference, Assisted with Fluorescent Material for the Simultaneous Measurement of Temperature and Pressure.
    Jiang X; Lin C; Huang Y; Luo K; Zhang J; Jiang Q; Zhang C
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30836683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal Design of an Hourglass in-Fiber Air Fabry-Perot Microcavity-Towards Spectral Characteristics and Strain Sensing Technology.
    Wang Q; Yan D; Cui B; Guo Z
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28587221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Least square fitting demodulation technique for the interrogation of an optical fiber Fabry-Perot sensor with arbitrary reflectivity.
    Liu W; Ren Q; Jia P; Hong Y; Liang T; Liu J; Xiong J
    Appl Opt; 2020 Feb; 59(5):1301-1306. PubMed ID: 32225381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Five-step phase-shifting white-light interferometry for the measurement of fiber optic extrinsic Fabry-Perot interferometers.
    Gao H; Jiang Y; Zhang L; Jiang L
    Appl Opt; 2018 Feb; 57(5):1168-1173. PubMed ID: 29469861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity-Improved Ultrasonic Sensor for 3D Imaging of Seismic Physical Model Using a Compact Microcavity.
    Gang T; Hu M; Bai X; Rong Q
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30018223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Method of hybrid multiplexing for fiber-optic Fabry-Perot sensors utilizing frequency-shifted interferometry.
    Ou Y; Zhou C; Zheng A; Cheng C; Fan D; Yin J; Tian H; Li M; Lu Y
    Appl Opt; 2014 Dec; 53(35):8358-65. PubMed ID: 25608081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wavelength-switched phase interrogator for extrinsic Fabry-Perot interferometric sensors.
    Xia J; Xiong S; Wang F; Luo H
    Opt Lett; 2016 Jul; 41(13):3082-5. PubMed ID: 27367107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.