These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30583512)

  • 1. Voltage-Tunable Mid- and Long-Wavelength Dual-Band Infrared Photodetector Based on Hybrid Self-Assembled and Sub-Monolayer Quantum Dots.
    Zhai Y; Gu G; Lu X
    Micromachines (Basel); 2018 Dec; 10(1):. PubMed ID: 30583512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mid- and Long-Wave Infrared Optoelectronics via Intraband Transitions in PbS Colloidal Quantum Dots.
    Ramiro I; Özdemir O; Christodoulou S; Gupta S; Dalmases M; Torre I; Konstantatos G
    Nano Lett; 2020 Feb; 20(2):1003-1008. PubMed ID: 31934762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bias-Tunable Quantum Well Infrared Photodetector.
    Biswal G; Yakimov M; Tokranov V; Sablon K; Tulyakov S; Mitin V; Oktyabrsky S
    Nanomaterials (Basel); 2024 Mar; 14(6):. PubMed ID: 38535696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast and Sensitive Colloidal Quantum Dot Mid-Wave Infrared Photodetectors.
    Ackerman MM; Tang X; Guyot-Sionnest P
    ACS Nano; 2018 Jul; 12(7):7264-7271. PubMed ID: 29975502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable Mid-Infrared Interband Emission from Tensile-Strained InGaAs Quantum Dots.
    Vallejo KD; Cabrera-Perdomo CI; Garrett TA; Drake MD; Liang B; Grossklaus KA; Simmonds PJ
    ACS Nano; 2023 Feb; 17(3):2318-2327. PubMed ID: 36649642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Room Temperature Broadband Bi
    Yu L; Tian P; Tang L; Zuo W; Zhong H; Hao Q; Teng KS; Zhao G; Su R; Gong X; Yuan J
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mid-wave and long-wave infrared dual-band stacked metamaterial absorber for broadband with high refractive index sensitivity.
    Hou E; Meng D; Liang Z; Xiong Y; Yang F; Tang Y; Fan Y; Qin Z; Shi X; Zhang Y; Liang J; Chen C; Lai J
    Appl Opt; 2020 Mar; 59(9):2695-2700. PubMed ID: 32225817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel narrow band-gap InAsSbP-based quantum dot mid-infrared photodetectors: fabrication, optoelectronic and electrophysical properties.
    Harutyunyan V; Gambaryan K; Aroutiounian V
    J Nanosci Nanotechnol; 2013 Feb; 13(2):799-803. PubMed ID: 23646518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene-based polarization-sensitive longwave infrared photodetector.
    Liu L; Liu Y; Gong T; Huang W; Guo J; Zhang X; Zhou S; Yu B
    Nanotechnology; 2019 Oct; 30(43):435205. PubMed ID: 31342914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progress and prospects for quantum dots in a well infrared photodetectors.
    Vandervelde TE; Krishna S
    J Nanosci Nanotechnol; 2010 Mar; 10(3):1450-60. PubMed ID: 20355535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadband tunable laser and infrared camouflage by wavelength-selective scattering metamaterial with radiative thermal management.
    Deng Z; Hu W; Zhou P; Huang L; Wang T; Wang X; Gong R
    Opt Lett; 2024 Feb; 49(4):935-938. PubMed ID: 38359220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of dual-band infrared zoom lens with multilayer diffractive optical elements.
    Zhang B; Cui Q; Piao M; Hu Y
    Appl Opt; 2019 Mar; 58(8):2058-2067. PubMed ID: 30874079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-band metamaterial absorber with a low-coherence composite cross structure in mid-wave and long-wave infrared bands.
    Hou E; Qin Z; Liang Z; Meng D; Shi X; Yang F; Liu W; Liu H; Xu H; Smith DR; Liu Y
    Opt Express; 2021 Oct; 29(22):36145-36154. PubMed ID: 34809033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole-infrared-band camouflage with dual-band radiative heat dissipation.
    Qin B; Zhu Y; Zhou Y; Qiu M; Li Q
    Light Sci Appl; 2023 Oct; 12(1):246. PubMed ID: 37794015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of infrared thermography for the dynamic measurement of skin temperature of moving athletes during competition; methodological issues.
    Aylwin PE; Racinais S; Bermon S; Lloyd A; Hodder S; Havenith G
    Physiol Meas; 2021 Aug; 42(8):. PubMed ID: 34320480
    [No Abstract]   [Full Text] [Related]  

  • 16. Highly selective two-color mid-wave and long-wave infrared detector hybrid based on Type-II superlattices.
    Huang EK; Hoang MA; Chen G; Ramezani-Darvish S; Haddadi A; Razeghi M
    Opt Lett; 2012 Nov; 37(22):4744-6. PubMed ID: 23164899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Room Temperature Bias-Selectable, Dual-Band Infrared Detectors Based on Lead Sulfide Colloidal Quantum Dots and Black Phosphorus.
    Wang S; Ashokan A; Balendhran S; Yan W; Johnson BC; Peruzzo A; Crozier KB; Mulvaney P; Bullock J
    ACS Nano; 2023 Jun; 17(12):11771-11782. PubMed ID: 37318109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-band infrared remote sensing system with combined long-wave infrared imaging and mid-wave infrared spectral analysis.
    Fang Z; Yi X; Liu X; Zhang W; Zhang T
    Rev Sci Instrum; 2013 Aug; 84(8):083106. PubMed ID: 24007052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of LWIR to VLWIR barrier photodetectors based on M-structure superlattices.
    Cheng Y; Li M; Song Z; Li C
    Opt Express; 2024 Jan; 32(2):2804-2816. PubMed ID: 38297800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Sensitivity Shortwave Infrared Photodetector Based on PbS QDs Using P3HT.
    Kwon JB; Han M; Jung DG; Kong SH; Jung D
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.