BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30584112)

  • 1. Comparing mutagenesis and simulations as tools for identifying functionally important sequence changes for protein thermal adaptation.
    Liao ML; Somero GN; Dong YW
    Proc Natl Acad Sci U S A; 2019 Jan; 116(2):679-688. PubMed ID: 30584112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural flexibility and protein adaptation to temperature: Molecular dynamics analysis of malate dehydrogenases of marine molluscs.
    Dong YW; Liao ML; Meng XL; Somero GN
    Proc Natl Acad Sci U S A; 2018 Feb; 115(6):1274-1279. PubMed ID: 29358381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature sensitivities of cytosolic malate dehydrogenases from native and invasive species of marine mussels (genus Mytilus): sequence-function linkages and correlations with biogeographic distribution.
    Fields PA; Rudomin EL; Somero GN
    J Exp Biol; 2006 Feb; 209(Pt 4):656-67. PubMed ID: 16449560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature adaptation of cytosolic malate dehydrogenases of limpets (genus Lottia): differences in stability and function due to minor changes in sequence correlate with biogeographic and vertical distributions.
    Dong Y; Somero GN
    J Exp Biol; 2009 Jan; 212(Pt 2):169-77. PubMed ID: 19112135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat-resistant cytosolic malate dehydrogenases (cMDHs) of thermophilic intertidal snails (genus
    Liao ML; Zhang S; Zhang GY; Chu YM; Somero GN; Dong YW
    J Exp Biol; 2017 Jun; 220(Pt 11):2066-2075. PubMed ID: 28566358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptations of protein structure and function to temperature: there is more than one way to 'skin a cat'.
    Fields PA; Dong Y; Meng X; Somero GN
    J Exp Biol; 2015 Jun; 218(Pt 12):1801-11. PubMed ID: 26085658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary convergence in adaptation of proteins to temperature: A4-lactate dehydrogenases of Pacific damselfishes (Chromis spp.).
    Johns GC; Somero GN
    Mol Biol Evol; 2004 Feb; 21(2):314-20. PubMed ID: 14660697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of lactate dehydrogenase-A homologs of barracuda fishes (genus Sphyraena) from different thermal environments: differences in kinetic properties and thermal stability are due to amino acid substitutions outside the active site.
    Holland LZ; McFall-Ngai M; Somero GN
    Biochemistry; 1997 Mar; 36(11):3207-15. PubMed ID: 9115998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenase A4 orthologs of Antarctic notothenioid fishes.
    Fields PA; Somero GN
    Proc Natl Acad Sci U S A; 1998 Sep; 95(19):11476-81. PubMed ID: 9736762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of engineered electrostatic interactions to the stability of cytosolic malate dehydrogenase.
    Trejo F; Gelpí JL; Ferrer A; Boronat A; Busquets M; Cortés A
    Protein Eng; 2001 Nov; 14(11):911-7. PubMed ID: 11742111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational stability of the N-terminal amino acid residues of mutated recombinant pigeon liver malic enzymes.
    Chou WY; Huang SM; Chang GG
    Protein Eng; 1998 May; 11(5):371-6. PubMed ID: 9681869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal adaptation of mRNA secondary structure: stability versus lability.
    Liao ML; Dong YW; Somero GN
    Proc Natl Acad Sci U S A; 2021 Nov; 118(45):. PubMed ID: 34728561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional determinants of temperature adaptation in enzymes of cold- versus warm-adapted mussels (Genus Mytilus).
    Lockwood BL; Somero GN
    Mol Biol Evol; 2012 Oct; 29(10):3061-70. PubMed ID: 22491035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogenetic relationships and biochemical properties of the duplicated cytosolic and mitochondrial isoforms of malate dehydrogenase from a teleost fish, Sphyraena idiastes.
    Lin JJ; Yang TH; Wahlstrand BD; Fields PA; Somero GN
    J Mol Evol; 2002 Jan; 54(1):107-17. PubMed ID: 11734904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cold-active enzymes studied by comparative molecular dynamics simulation.
    Spiwok V; Lipovová P; Skálová T; Dusková J; Dohnálek J; Hasek J; Russell NJ; Králová B
    J Mol Model; 2007 Apr; 13(4):485-97. PubMed ID: 17235516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of low-temperature caseinolytic activity of a thermophilic subtilase by directed evolution and site-directed mutagenesis.
    Zhong CQ; Song S; Fang N; Liang X; Zhu H; Tang XF; Tang B
    Biotechnol Bioeng; 2009 Dec; 104(5):862-70. PubMed ID: 19609954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A single amino acid mutation enhances the thermal stability of Escherichia coli malate dehydrogenase.
    Goward CR; Miller J; Nicholls DJ; Irons LI; Scawen MD; O'Brien R; Chowdhry BZ
    Eur J Biochem; 1994 Aug; 224(1):249-55. PubMed ID: 8076646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decreases in activation energy and substrate affinity in cold-adapted A4-lactate dehydrogenase: evidence from the Antarctic notothenioid fish Chaenocephalus aceratus.
    Fields PA; Houseman DE
    Mol Biol Evol; 2004 Dec; 21(12):2246-55. PubMed ID: 15317880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of the turnover number of thermostable malate dehydrogenase by deleting hydrogen bonds around the catalytic site.
    Nishiyama M; Kinoshita M; Kudo H; Horinouchi S; Tanokura M
    Biochem Biophys Res Commun; 1996 Aug; 225(3):844-8. PubMed ID: 8780700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Malate dehydrogenase: a model for structure, evolution, and catalysis.
    Goward CR; Nicholls DJ
    Protein Sci; 1994 Oct; 3(10):1883-8. PubMed ID: 7849603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.