These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30584112)

  • 21. Sequence-Based Analysis of Thermal Adaptation and Protein Energy Landscapes in an Invasive Blue Mussel (Mytilus galloprovincialis).
    Saarman NP; Kober KM; Simison WB; Pogson GH
    Genome Biol Evol; 2017 Oct; 9(10):2739-2751. PubMed ID: 28985307
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An active-site cysteine of sorghum leaf NADP-malate dehydrogenase studied by site-directed mutagenesis.
    Lemaire M; Issakidis E; Ruelland E; Decottignies P; Miginiac-Maslow M
    FEBS Lett; 1996 Mar; 382(1-2):137-40. PubMed ID: 8612735
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrostatic interactions across the dimer-dimer interface contribute to the pH-dependent stability of a tetrameric malate dehydrogenase.
    Bjørk A; Mantzilas D; Sirevåg R; Eijsink VG
    FEBS Lett; 2003 Oct; 553(3):423-6. PubMed ID: 14572663
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional roles of ATP-binding residues in the catalytic site of human mitochondrial NAD(P)+-dependent malic enzyme.
    Hung HC; Chien YC; Hsieh JY; Chang GG; Liu GY
    Biochemistry; 2005 Sep; 44(38):12737-45. PubMed ID: 16171388
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sampling the conformational energy landscape of a hyperthermophilic protein by engineering key substitutions.
    Colletier JP; Aleksandrov A; Coquelle N; Mraihi S; Mendoza-Barberá E; Field M; Madern D
    Mol Biol Evol; 2012 Jun; 29(6):1683-94. PubMed ID: 22319152
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering of a stable mutant malic enzyme by introducing an extra ion-pair to the protein.
    Huang SM; Chou WY; Lin SI; Chang GG
    Proteins; 1998 Apr; 31(1):61-73. PubMed ID: 9552159
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of the functional role of Asp141, Asp194, and Asp464 residues in the Mn2+-L-malate binding of pigeon liver malic enzyme.
    Chou WY; Chang HP; Huang CH; Kuo CC; Tong L; Chang GG
    Protein Sci; 2000 Feb; 9(2):242-51. PubMed ID: 10716176
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine 'winners' and 'losers'.
    Somero GN
    J Exp Biol; 2010 Mar; 213(6):912-20. PubMed ID: 20190116
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Purification, characterization, and overexpression of psychrophilic and thermolabile malate dehydrogenase of a novel antarctic psychrotolerant, Flavobacterium frigidimaris KUC-1.
    Oikawa T; Yamamoto N; Shimoke K; Uesato S; Ikeuchi T; Fujioka T
    Biosci Biotechnol Biochem; 2005 Nov; 69(11):2146-54. PubMed ID: 16306697
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural and functional effects of mutations altering the subunit interface of mitochondrial malate dehydrogenase.
    Steffan JS; McAlister-Henn L
    Arch Biochem Biophys; 1991 Jun; 287(2):276-82. PubMed ID: 1898005
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of an anion-binding site in the stabilization of halophilic malate dehydrogenase from Haloarcula marismortui.
    Madern D; Ebel C
    Biochimie; 2007 Aug; 89(8):981-7. PubMed ID: 17451860
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differences in malate dehydrogenases from the obligately piezophilic deep-sea bacterium Moritella sp. strain 2D2 and the psychrophilic bacterium Moritella sp. strain 5710.
    Saito R; Nakayama A
    FEMS Microbiol Lett; 2004 Apr; 233(1):165-72. PubMed ID: 15043884
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermal adaptation in the honeybee (
    Meemongkolkiat T; Allison J; Seebacher F; Lim J; Chanchao C; Oldroyd BP
    J Exp Biol; 2020 Sep; 223(Pt 18):. PubMed ID: 32680901
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stringency of substrate specificity of Escherichia coli malate dehydrogenase.
    Boernke WE; Millard CS; Stevens PW; Kakar SN; Stevens FJ; Donnelly MI
    Arch Biochem Biophys; 1995 Sep; 322(1):43-52. PubMed ID: 7574693
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A thioredoxin-independent fully active NADP-malate dehydrogenase obtained by site-directed mutagenesis.
    Issakidis E; Decottignies P; Miginiac-Maslow M
    FEBS Lett; 1993 Apr; 321(1):55-8. PubMed ID: 8467911
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proper positioning of the nicotinamide ring is crucial for the Ascaris suum malic enzyme reaction.
    Aktas DF; Cook PF
    Biochemistry; 2008 Feb; 47(8):2539-46. PubMed ID: 18215074
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Site directed mutagenesis: a tool for enzyme mechanism dissection.
    Wagner CR; Benkovic SJ
    Trends Biotechnol; 1990 Sep; 8(9):263-70. PubMed ID: 1366735
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rational engineering of a malate dehydrogenase for microbial production of 2,4-dihydroxybutyric acid via homoserine pathway.
    Frazão CJR; Topham CM; Malbert Y; François JM; Walther T
    Biochem J; 2018 Dec; 475(23):3887-3901. PubMed ID: 30409827
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temperature-sensitive contacts in disordered loops tune enzyme I activity.
    Burns D; Singh A; Venditti V; Potoyan DA
    Proc Natl Acad Sci U S A; 2022 Nov; 119(47):e2210537119. PubMed ID: 36375052
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determinants of protein thermostability observed in the 1.9-A crystal structure of malate dehydrogenase from the thermophilic bacterium Thermus flavus.
    Kelly CA; Nishiyama M; Ohnishi Y; Beppu T; Birktoft JJ
    Biochemistry; 1993 Apr; 32(15):3913-22. PubMed ID: 8471603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.