These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30584462)

  • 21. Redox atlas of the mouse. Immunohistochemical detection of glutaredoxin-, peroxiredoxin-, and thioredoxin-family proteins in various tissues of the laboratory mouse.
    Godoy JR; Funke M; Ackermann W; Haunhorst P; Oesteritz S; Capani F; Elsässer HP; Lillig CH
    Biochim Biophys Acta; 2011 Jan; 1810(1):2-92. PubMed ID: 20682242
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Redox-dependent regulation of intracellular signaling via nucleoredoxin].
    Funato Y; Miki H
    Seikagaku; 2013 Mar; 85(3):174-8. PubMed ID: 23631312
    [No Abstract]   [Full Text] [Related]  

  • 23. Redox modifications of protein-thiols: emerging roles in cell signaling.
    Biswas S; Chida AS; Rahman I
    Biochem Pharmacol; 2006 Feb; 71(5):551-64. PubMed ID: 16337153
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reactivity of the human thioltransferase (glutaredoxin) C7S, C25S, C78S, C82S mutant and NMR solution structure of its glutathionyl mixed disulfide intermediate reflect catalytic specificity.
    Yang Y; Jao Sc; Nanduri S; Starke DW; Mieyal JJ; Qin J
    Biochemistry; 1998 Dec; 37(49):17145-56. PubMed ID: 9860827
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thioredoxin 1 and glutaredoxin 2 contribute to maintain the phenotype and integrity of neurons following perinatal asphyxia.
    Romero JI; Hanschmann EM; Gellert M; Eitner S; Holubiec MI; Blanco-Calvo E; Lillig CH; Capani F
    Biochim Biophys Acta; 2015 Jun; 1850(6):1274-85. PubMed ID: 25735211
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vivo reduction-oxidation state of protein disulfide isomerase: the two active sites independently occur in the reduced and oxidized forms.
    Appenzeller-Herzog C; Ellgaard L
    Antioxid Redox Signal; 2008 Jan; 10(1):55-64. PubMed ID: 17939758
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD.
    Budanov AV; Sablina AA; Feinstein E; Koonin EV; Chumakov PM
    Science; 2004 Apr; 304(5670):596-600. PubMed ID: 15105503
    [TBL] [Abstract][Full Text] [Related]  

  • 28. HIV-1 tat expression and sulphamethoxazole hydroxylamine mediated oxidative stress alter the disulfide proteome in Jurkat T cells.
    Adeyanju K; Bend JR; Rieder MJ; Dekaban GA
    Virol J; 2018 May; 15(1):82. PubMed ID: 29743079
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin.
    Biteau B; Labarre J; Toledano MB
    Nature; 2003 Oct; 425(6961):980-4. PubMed ID: 14586471
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57.
    Dyson HJ; Jeng MF; Tennant LL; Slaby I; Lindell M; Cui DS; Kuprin S; Holmgren A
    Biochemistry; 1997 Mar; 36(9):2622-36. PubMed ID: 9054569
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein-thiol oxidation, from single proteins to proteome-wide analyses.
    Le Moan N; Tacnet F; Toledano MB
    Methods Mol Biol; 2008; 476():181-98. PubMed ID: 19157017
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cell-surface NAD(P)H-oxidase: relationship to trans-plasma membrane NADH-oxidoreductase and a potential source of circulating NADH-oxidase.
    Berridge MV; Tan AS
    Antioxid Redox Signal; 2000; 2(2):277-88. PubMed ID: 11229532
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulatory control of human cytosolic branched-chain aminotransferase by oxidation and S-glutathionylation and its interactions with redox sensitive neuronal proteins.
    Conway ME; Coles SJ; Islam MM; Hutson SM
    Biochemistry; 2008 May; 47(19):5465-79. PubMed ID: 18419134
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of novel targets of cyanobacterial glutaredoxin.
    Li M; Yang Q; Zhang L; Li H; Cui Y; Wu Q
    Arch Biochem Biophys; 2007 Feb; 458(2):220-8. PubMed ID: 17239812
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Redox control systems in the nucleus: mechanisms and functions.
    Go YM; Jones DP
    Antioxid Redox Signal; 2010 Aug; 13(4):489-509. PubMed ID: 20210649
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel mouse model for the identification of thioredoxin-1 protein interactions.
    Booze ML; Hansen JM; Vitiello PF
    Free Radic Biol Med; 2016 Oct; 99():533-543. PubMed ID: 27639450
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct association of hepatopoietin with thioredoxin constitutes a redox signal transduction in activation of AP-1/NF-kappaB.
    Li Y; Liu W; Xing G; Tian C; Zhu Y; He F
    Cell Signal; 2005 Aug; 17(8):985-96. PubMed ID: 15894171
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Requirement for the two AhpF cystine disulfide centers in catalysis of peroxide reduction by alkyl hydroperoxide reductase.
    Li Calzi M; Poole LB
    Biochemistry; 1997 Oct; 36(43):13357-64. PubMed ID: 9341228
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigating redox regulation of protein tyrosine phosphatases using low pH thiol labeling and enrichment strategies coupled to MALDI-TOF mass spectrometry.
    Bonham CA; Steevensz AJ; Geng Q; Vacratsis PO
    Methods; 2014 Jan; 65(2):190-200. PubMed ID: 23978514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein disulfides and protein disulfide oxidoreductases in hyperthermophiles.
    Ladenstein R; Ren B
    FEBS J; 2006 Sep; 273(18):4170-85. PubMed ID: 16930136
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.