BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30584706)

  • 1. [Research progress of heparinase in the field of medicine].
    Liu W; Jiang Y; Zhao L; Zhang P; Wang S
    Sheng Wu Gong Cheng Xue Bao; 2018 Dec; 34(12):1953-1962. PubMed ID: 30584706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial heparin/heparan sulphate lyases: potential and applications.
    Tripathi CK; Banga J; Mishra V
    Appl Microbiol Biotechnol; 2012 Apr; 94(2):307-21. PubMed ID: 22391972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heparan sulfate, heparin, and heparinase activity detection on polyacrylamide gel electrophoresis using the fluorochrome tris(2,2'-bipyridine) ruthenium (II).
    Rozenberg GI; Espada J; de Cidre LL; Eiján AM; Calvo JC; Bertolesi GE
    Electrophoresis; 2001 Jan; 22(1):3-11. PubMed ID: 11197174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production, characteristics and applications of microbial heparinases.
    Boyce A; Walsh G
    Biochimie; 2022 Jul; 198():109-140. PubMed ID: 35367577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and Expression of Heparinase Gene from a Novel Strain Raoultella NX-TZ-3-15.
    Li Y; Lin Y; Jiang Y; Mehwish HM; Rajoka MSR; Zhao L
    Appl Biochem Biotechnol; 2022 Oct; 194(10):4971-4984. PubMed ID: 35679015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct substrate specificities of bacterial heparinases against N-unsubstituted glucosamine residues in heparan sulfate.
    Wei Z; Lyon M; Gallagher JT
    J Biol Chem; 2005 Apr; 280(16):15742-8. PubMed ID: 15705564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controllable production of low molecular weight heparins by combinations of heparinase I/II/III.
    Wu J; Zhang C; Mei X; Li Y; Xing XH
    Carbohydr Polym; 2014 Jan; 101():484-92. PubMed ID: 24299802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heparinase II from Flavobacterium heparinum. Role of cysteine in enzymatic activity as probed by chemical modification and site- directed mutagenesis.
    Shriver Z; Hu Y; Pojasek K; Sasisekharan R
    J Biol Chem; 1998 Sep; 273(36):22904-12. PubMed ID: 9722510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring bacterial heparinase II activities with defined substrates.
    Bohlmann L; Chang CW; Beacham I; von Itzstein M
    Chembiochem; 2015 May; 16(8):1205-11. PubMed ID: 25907974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fractionation of heparin-derived oligosaccharides by gradient polyacrylamide-gel electrophoresis.
    Rice KG; Rottink MK; Linhardt RJ
    Biochem J; 1987 Jun; 244(3):515-22. PubMed ID: 3446173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heparinase II from Flavobacterium heparinum. Role of histidine residues in enzymatic activity as probed by chemical modification and site-directed mutagenesis.
    Shriver Z; Hu Y; Sasisekharan R
    J Biol Chem; 1998 Apr; 273(17):10160-7. PubMed ID: 9553064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning, sequencing, and expression of the gene from bacillus circulans that codes for a heparinase that degrades both heparin and heparan sulfate.
    Yoshida E; Arakawa S; Matsunaga T; Toriumi S; Tokuyama S; Morikawa K; Tahara Y
    Biosci Biotechnol Biochem; 2002 Sep; 66(9):1873-9. PubMed ID: 12400686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cleavage of the antithrombin III binding site in heparin by heparinases and its implication in the generation of low molecular weight heparin.
    Shriver Z; Sundaram M; Venkataraman G; Fareed J; Linhardt R; Biemann K; Sasisekharan R
    Proc Natl Acad Sci U S A; 2000 Sep; 97(19):10365-70. PubMed ID: 10984532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncovering the detailed mode of cleavage of heparinase I toward structurally defined heparin oligosaccharides.
    Zhang C; Tang F; Zhang J; Cao J; Li H; Liu C
    Int J Biol Macromol; 2019 Dec; 141():756-764. PubMed ID: 31479666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic Sequencing of Heparin Oligosaccharides Using Exolyase.
    Zhang Q; Lu D; Li F
    Methods Mol Biol; 2023; 2619():249-256. PubMed ID: 36662475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mass spectrometric evidence for the enzymatic mechanism of the depolymerization of heparin-like glycosaminoglycans by heparinase II.
    Rhomberg AJ; Shriver Z; Biemann K; Sasisekharan R
    Proc Natl Acad Sci U S A; 1998 Oct; 95(21):12232-7. PubMed ID: 9770469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and characterization of heparinase that degrades both heparin and heparan sulfate from Bacillus circulans.
    Yoshida E; Sakai K; Tokuyama S; Miyazono H; Maruyama H; Morikawa K; Yoshida K; Tahara Y
    Biosci Biotechnol Biochem; 2002 May; 66(5):1181-4. PubMed ID: 12092842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of structurally defined oligosaccharide substrates of heparin and heparan monosulfate lyases.
    Rice KG; Linhardt RJ
    Carbohydr Res; 1989 Jul; 190(2):219-33. PubMed ID: 2805009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-based engineering of heparinase I with improved specific activity for degrading heparin.
    Zhang C; Yang BC; Liu WT; Li ZY; Song YJ; Zhang TC; Luo XG
    BMC Biotechnol; 2019 Aug; 19(1):59. PubMed ID: 31399136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heparin depolymerization by immobilized heparinase: A review.
    Bhushan I; Alabbas A; Sistla JC; Saraswat R; Desai UR; Gupta RB
    Int J Biol Macromol; 2017 Jun; 99():721-730. PubMed ID: 28300590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.