BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 30584708)

  • 1. [Single-domain antibody - advances in research and application].
    Kang X; Cao J; Zhang B; Yuan Q
    Sheng Wu Gong Cheng Xue Bao; 2018 Dec; 34(12):1974-1984. PubMed ID: 30584708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanobodies and Nanobody-Based Human Heavy Chain Antibodies As Antitumor Therapeutics.
    Bannas P; Hambach J; Koch-Nolte F
    Front Immunol; 2017; 8():1603. PubMed ID: 29213270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application Progress of the Single Domain Antibody in Medicine.
    Tang H; Gao Y; Han J
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Serum immunoglobulin or albumin binding single-domain antibodies that enable tailored half-life extension of biologics in multiple animal species.
    Harmsen MM; Ackerschott B; de Smit H
    Front Immunol; 2024; 15():1346328. PubMed ID: 38352869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Structure of Natural and Recombinant Antibodies.
    Ma H; O'Kennedy R
    Methods Mol Biol; 2015; 1348():7-11. PubMed ID: 26424258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introduction to heavy chain antibodies and derived Nanobodies.
    Vincke C; Muyldermans S
    Methods Mol Biol; 2012; 911():15-26. PubMed ID: 22886243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability-Diversity Tradeoffs Impose Fundamental Constraints on Selection of Synthetic Human V
    Henry KA; Kim DY; Kandalaft H; Lowden MJ; Yang Q; Schrag JD; Hussack G; MacKenzie CR; Tanha J
    Front Immunol; 2017; 8():1759. PubMed ID: 29375542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single Domain Antibody application in bacterial infection diagnosis and neutralization.
    Qin Q; Liu H; He W; Guo Y; Zhang J; She J; Zheng F; Zhang S; Muyldermans S; Wen Y
    Front Immunol; 2022; 13():1014377. PubMed ID: 36248787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermostable llama single domain antibodies for detection of botulinum A neurotoxin complex.
    Goldman ER; Anderson GP; Conway J; Sherwood LJ; Fech M; Vo B; Liu JL; Hayhurst A
    Anal Chem; 2008 Nov; 80(22):8583-91. PubMed ID: 18947189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational design of viscosity reducing mutants of a monoclonal antibody: hydrophobic versus electrostatic inter-molecular interactions.
    Nichols P; Li L; Kumar S; Buck PM; Singh SK; Goswami S; Balthazor B; Conley TR; Sek D; Allen MJ
    MAbs; 2015; 7(1):212-30. PubMed ID: 25559441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RP215 single chain fragment variable and single domain recombinant antibodies induce cell cycle arrest at G0/G1 phase in breast cancer.
    Yu F; Wang Y; Xiao Y; He Y; Luo C; Duan D; Li C; Xu S; Xiang T
    Mol Immunol; 2014 May; 59(1):100-9. PubMed ID: 24534066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural insights and biomedical potential of IgNAR scaffolds from sharks.
    Zielonka S; Empting M; Grzeschik J; Könning D; Barelle CJ; Kolmar H
    MAbs; 2015; 7(1):15-25. PubMed ID: 25523873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of heavy and light chain sequences of conventional camelid antibodies from Camelus dromedarius and Camelus bactrianus species.
    Griffin LM; Snowden JR; Lawson AD; Wernery U; Kinne J; Baker TS
    J Immunol Methods; 2014 Mar; 405():35-46. PubMed ID: 24444705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noncovalent association of heavy and light chains of human immunoglobulins. IV. The roles of the CH1 and CL domains in idiotypic expression.
    Rinfret A; Horne C; Dorrington KJ; Klein M
    J Immunol; 1985 Oct; 135(4):2574-81. PubMed ID: 3928754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Over expression of anti-MUC1 single-domain antibody fragments in the yeast Pichia pastoris.
    Rahbarizadeh F; Rasaee MJ; Forouzandeh M; Allameh AA
    Mol Immunol; 2006 Feb; 43(5):426-35. PubMed ID: 16337485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Naturally occurring antibodies devoid of light chains.
    Hamers-Casterman C; Atarhouch T; Muyldermans S; Robinson G; Hamers C; Songa EB; Bendahman N; Hamers R
    Nature; 1993 Jun; 363(6428):446-8. PubMed ID: 8502296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing domain interactions within antibody Fabs with kappa and lambda light chains.
    Toughiri R; Wu X; Ruiz D; Huang F; Crissman JW; Dickey M; Froning K; Conner EM; Cujec TP; Demarest SJ
    MAbs; 2016 Oct; 8(7):1276-1285. PubMed ID: 27454112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Advances in the study of natural small molecular antibody].
    Zhu L; Zhang DP
    Yao Xue Xue Bao; 2012 Oct; 47(10):1281-6. PubMed ID: 23289139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rearrangement of the former VL interface in the solution structure of a camelised, single antibody VH domain.
    Riechmann L
    J Mol Biol; 1996 Jun; 259(5):957-69. PubMed ID: 8683598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of heavy and light chain assembly by modification of heavy chain constant region 1 (CH1): Application for the construction of an anti-paclitaxel fragment antigen-binding (Fab) antibody.
    Yusakul G; Sakamoto S; Tanaka H; Morimoto S
    J Biotechnol; 2018 Dec; 288():41-47. PubMed ID: 30389640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.