BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 30584746)

  • 1. Screening and identification of antagonistic actinomycete LA-5 against Botrytis cinerea.
    Li PQ; Feng BZ; Li XX; Hao HY
    Ying Yong Sheng Tai Xue Bao; 2018 Dec; 29(12):4172-4180. PubMed ID: 30584746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Biocontrol Efficacy of
    Lian Q; Zhang J; Gan L; Ma Q; Zong Z; Wang Y
    Biomed Res Int; 2017; 2017():9486794. PubMed ID: 29318156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Identification of endophytic actinomycete St24 tomato plants from and its application in biocontrol of gray mold disease].
    Wang MQ; Ma L; Han JC; Liu HP; He YC
    Ying Yong Sheng Tai Xue Bao; 2012 Sep; 23(9):2529-35. PubMed ID: 23286012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacillus velezensis FX-6 suppresses the infection of Botrytis cinerea and increases the biomass of tomato plants.
    Li Z; Li J; Yu M; Quandahor P; Tian T; Shen T
    PLoS One; 2023; 18(6):e0286971. PubMed ID: 37319286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Biocontrol Strain of
    Wang H; Shi Y; Wang D; Yao Z; Wang Y; Liu J; Zhang S; Wang A
    Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29734678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Screening, identification and biocontrol effect of antagonistic actinomycetes against the pathogen of Cytospora sp. for apple tree].
    Xue YY; Fan WZ; Zhang SW; Xu BL
    Ying Yong Sheng Tai Xue Bao; 2016 Oct; 27(10):3379-3386. PubMed ID: 29726166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Isolation of Actinomycete DF02 from Composting and Its Application in Biological Control of Botrytis cinerea].
    Wang XJ; Min CL; Yang Y
    Zhong Yao Cai; 2015 Aug; 38(8):1566-70. PubMed ID: 26983225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea.
    Gao P; Qin J; Li D; Zhou S
    PLoS One; 2018; 13(1):e0190932. PubMed ID: 29320571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation, identification, and biocontrol of antagonistic bacterium against Botrytis cinerea after tomato harvest.
    Shi JF; Sun CQ
    Braz J Microbiol; 2017; 48(4):706-714. PubMed ID: 28645650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of linalool on
    Wang QF; Wang XY; Li HS; Yang XY; Zhang RM; Gong B; Li XM; Shi QH
    Ying Yong Sheng Tai Xue Bao; 2023 Jan; 34(1):213-220. PubMed ID: 36799396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antagonistic effects of Bacillus cereus strain B-02 on morphology, ultrastructure and cytophysiology of Botrytis cinerea.
    Li FX; Ma HQ; Liu J; Zhang C
    Pol J Microbiol; 2012; 61(2):119-28. PubMed ID: 23163211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antifungal compound, methyl hippurate from Bacillus velezensis CE 100 and its inhibitory effect on growth of Botrytis cinerea.
    Maung CEH; Lee HG; Cho JY; Kim KY
    World J Microbiol Biotechnol; 2021 Aug; 37(9):159. PubMed ID: 34420104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of endophytic Bacillus strains from tomato plants (Lycopersicon esculentum) displaying antifungal activity against Botrytis cinerea Pers.
    Kefi A; Ben Slimene I; Karkouch I; Rihouey C; Azaeiz S; Bejaoui M; Belaid R; Cosette P; Jouenne T; Limam F
    World J Microbiol Biotechnol; 2015 Dec; 31(12):1967-76. PubMed ID: 26347324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptomic analysis and knockout experiments reveal the role of suhB in the biocontrol effects of Pantoea jilinensis D25 on Botrytis cinerea.
    Zheng L; Han Z; Wang S; Gao A; Liu L; Pan H; Zhang H
    Sci Total Environ; 2024 Apr; 919():170771. PubMed ID: 38336045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel Trichoderma asperellum strain DQ-1 promotes tomato growth and induces resistance to gray mold caused by Botrytis cinerea.
    Wang R; Chen D; Khan RAA; Cui J; Hou J; Liu T
    FEMS Microbiol Lett; 2021 Nov; 368(20):. PubMed ID: 34751779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro and in vivo antimicrobial activity of Xenorhabdus bovienii YL002 against Phytophthora capsici and Botrytis cinerea.
    Fang XL; Li ZZ; Wang YH; Zhang X
    J Appl Microbiol; 2011 Jul; 111(1):145-54. PubMed ID: 21554568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Streptomyces sp. FX13 inhibits fungicide-resistant Botrytis cinerea in vitro and in vivo by producing oligomycin A.
    Xiao L; Niu HJ; Qu TL; Zhang XF; Du FY
    Pestic Biochem Physiol; 2021 Jun; 175():104834. PubMed ID: 33993959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antifungal effect of 405-nm light on Botrytis cinerea.
    Imada K; Tanaka S; Ibaraki Y; Yoshimura K; Ito S
    Lett Appl Microbiol; 2014 Dec; 59(6):670-6. PubMed ID: 25236427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oligomycin-producing
    Louviot F; Abdelrahman O; Abou-Mansour E; L'Haridon F; Allard P-M; Falquet L; Weisskopf L
    mSphere; 2024 Jun; ():e0066723. PubMed ID: 38864637
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Jiang M; Xu X; Song J; Li D; Han L; Sun X; Guo L; Xiang W; Zhao J; Wang X
    Int J Syst Evol Microbiol; 2021 Sep; 71(9):. PubMed ID: 34520340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.