BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 30585088)

  • 1. Novel antiviral drug discovery strategies to tackle drug-resistant mutants of influenza virus strains.
    Shin WJ; Seong BL
    Expert Opin Drug Discov; 2019 Feb; 14(2):153-168. PubMed ID: 30585088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling the emergence of influenza drug resistance: The roles of surface proteins, the immune response and antiviral mechanisms.
    Dobrovolny HM; Beauchemin CAA
    PLoS One; 2017; 12(7):e0180582. PubMed ID: 28700622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling the evolution of drug resistance in the presence of antiviral drugs.
    Wu J; Yan P; Archibald C
    BMC Public Health; 2007 Oct; 7():300. PubMed ID: 17953775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Target-based drug design strategies to overcome resistance to antiviral agents: opportunities and challenges.
    Du S; Hu X; Menéndez-Arias L; Zhan P; Liu X
    Drug Resist Updat; 2024 Mar; 73():101053. PubMed ID: 38301487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances of phenotypic screening strategies in the application of anti-influenza virus drug discovery.
    Jia H; Hu L; Zhang J; Huang X; Jiang Y; Dong G; Liu C; Liu X; Kim M; Zhan P
    RSC Med Chem; 2024 Jan; 15(1):70-80. PubMed ID: 38283223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced drug delivery systems can assist in managing influenza virus infection: A hypothesis.
    Chan Y; Ng SW; Mehta M; Anand K; Kumar Singh S; Gupta G; Chellappan DK; Dua K
    Med Hypotheses; 2020 Nov; 144():110298. PubMed ID: 33254489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic optimization of host-directed therapeutic targets and preclinical validation of repositioned antiviral drugs.
    Xie D; He S; Han L; Wu L; Huang H; Tao H; Zhou P; Shi X; Bai H; Bo X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35238349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential of small-molecule fungal metabolites in antiviral chemotherapy.
    Roy BG
    Antivir Chem Chemother; 2017 Aug; 25(2):20-52. PubMed ID: 28737040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug Design Strategies to Avoid Resistance in Direct-Acting Antivirals and Beyond.
    Matthew AN; Leidner F; Lockbaum GJ; Henes M; Zephyr J; Hou S; Rao DN; Timm J; Rusere LN; Ragland DA; Paulsen JL; Prachanronarong K; Soumana DI; Nalivaika EA; Kurt Yilmaz N; Ali A; Schiffer CA
    Chem Rev; 2021 Mar; 121(6):3238-3270. PubMed ID: 33410674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current Influenza Antiviral Drug Strategy Limitations and Future Development of both Preventative and Intervention Antiviral Therapies.
    Ahmad F
    Recent Adv Antiinfect Drug Discov; 2024; 19(3):179-181. PubMed ID: 37867266
    [No Abstract]   [Full Text] [Related]  

  • 11. Orthopoxvirus targets for the development of new antiviral agents.
    Prichard MN; Kern ER
    Antiviral Res; 2012 May; 94(2):111-25. PubMed ID: 22406470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging drug design strategies in anti-influenza drug discovery.
    Liu C; Hu L; Dong G; Zhang Y; Ferreira da Silva-Júnior E; Liu X; Menéndez-Arias L; Zhan P
    Acta Pharm Sin B; 2023 Dec; 13(12):4715-4732. PubMed ID: 38045039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Efforts in Identification of Privileged Scaffolds as Antiviral Agents.
    Yadav Y; Singh K; Sharma S; Mishra VK; Sagar R
    Chem Biodivers; 2023 Oct; 20(10):e202300921. PubMed ID: 37589569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating Different Mechanisms of Action in Combination Therapy for Influenza.
    Melville K; Rodriguez T; Dobrovolny HM
    Front Pharmacol; 2018; 9():1207. PubMed ID: 30405419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revolutionizing viral disease treatment: Phase separation and lysosome/exosome targeting as new areas and new paradigms for antiviral drug research.
    Du S; Hu X; Liu X; Zhan P
    Drug Discov Today; 2024 Mar; 29(3):103888. PubMed ID: 38244674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of Azaindole-Based Frameworks as Potential Antiviral Agents and Their Future Perspectives.
    Urvashi ; Senthil Kumar JB; Das P; Tandon V
    J Med Chem; 2022 May; 65(9):6454-6495. PubMed ID: 35477274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unveiling innovative anti-influenza agents through modern medicinal chemistry approaches (2019-2023 updates).
    Liu C; Hu L; Jia H; Zhang J; Dong G; da Silva-Júnior EF; Liu X; Zhan P
    Future Med Chem; 2023 Nov; 15(21):1915-1917. PubMed ID: 37929606
    [No Abstract]   [Full Text] [Related]  

  • 18. SLiM-binding pockets: an attractive target for broad-spectrum antivirals.
    Simonetti L; Nilsson J; McInerney G; Ivarsson Y; Davey NE
    Trends Biochem Sci; 2023 May; 48(5):420-427. PubMed ID: 36623987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticle‑based antiviral strategies to combat the influenza virus (Review).
    Rios-Ibarra CP; Salinas-Santander M; Orozco-Nunnelly DA; Bravo-Madrigal J
    Biomed Rep; 2024 Apr; 20(4):65. PubMed ID: 38476608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antiviral Peptides with in vivo Activity: Development and Modes of Action.
    Gao B; Zhao D; Li L; Cheng Z; Guo Y
    Chempluschem; 2021 Nov; 86(12):1547-1558. PubMed ID: 34755499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.