BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 30585266)

  • 1. The intracellular NADH level regulates atrophic nonunion pathogenesis through the CtBP2-p300-Runx2 transcriptional complex.
    Zhang W; Duan N; Zhang Q; Song T; Li Z; Chen X; Wang K
    Int J Biol Sci; 2018; 14(14):2023-2036. PubMed ID: 30585266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NSM00158 Specifically Disrupts the CtBP2-p300 Interaction to Reverse CtBP2-Mediated Transrepression and Prevent the Occurrence of Nonunion.
    Chen X; Zhang W; Zhang Q; Song T; Yu Z; Li Z; Duan N; Dang X
    Mol Cells; 2020 Jun; 43(6):517-529. PubMed ID: 32434298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of DNMT2/3 by proinflammatory cytokines inhibits CtBP1/2-dependent genes to promote the occurrence of atrophic nonunion.
    Chen X; Wang C; Zhao G; Li Z; Zhang W; Song T; Zhang C; Duan N
    Cytokine; 2024 Jan; 173():156436. PubMed ID: 37979214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inflammation-dependent activation of NCOA2 associates with p300 and c-MYC/Max heterodimer to transactivate RUNX2-AS1 and mediate RUNX2 downstream bone differentiation genes in the pathology of septic nonunion.
    Li C; Qian YH
    Cytokine; 2022 Oct; 158():155992. PubMed ID: 35964415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in C-terminal binding protein 2 (CtBP2) corepressor complex induced by E1A and modulation of E1A transcriptional activity by CtBP2.
    Zhao LJ; Subramanian T; Chinnadurai G
    J Biol Chem; 2006 Dec; 281(48):36613-23. PubMed ID: 17023432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of ZEB and histone deacetylase with the PLDLS-binding cleft region of monomeric C-terminal binding protein 2.
    Zhao LJ; Kuppuswamy M; Vijayalingam S; Chinnadurai G
    BMC Mol Biol; 2009 Sep; 10():89. PubMed ID: 19754958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly of human C-terminal binding protein (CtBP) into tetramers.
    Bellesis AG; Jecrois AM; Hayes JA; Schiffer CA; Royer WE
    J Biol Chem; 2018 Jun; 293(23):9101-9112. PubMed ID: 29700119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the PLDLS-binding cleft region of CtBP1 in recruitment of core and auxiliary components of the corepressor complex.
    Kuppuswamy M; Vijayalingam S; Zhao LJ; Zhou Y; Subramanian T; Ryerse J; Chinnadurai G
    Mol Cell Biol; 2008 Jan; 28(1):269-81. PubMed ID: 17967884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parathyroid hormone activation of matrix metalloproteinase-13 transcription requires the histone acetyltransferase activity of p300 and PCAF and p300-dependent acetylation of PCAF.
    Lee M; Partridge NC
    J Biol Chem; 2010 Dec; 285(49):38014-22. PubMed ID: 20870727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acetylation by p300 regulates nuclear localization and function of the transcriptional corepressor CtBP2.
    Zhao LJ; Subramanian T; Zhou Y; Chinnadurai G
    J Biol Chem; 2006 Feb; 281(7):4183-9. PubMed ID: 16356938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transforming growth factor beta (TGF-β) is activated by the CtBP2-p300-AP1 transcriptional complex in chronic renal failure.
    Zhou P; Wan X; Zou Y; Chen Z; Zhong A
    Int J Biol Sci; 2020; 16(2):204-215. PubMed ID: 31929749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CtBP represses p300-mediated transcriptional activation by direct association with its bromodomain.
    Kim JH; Cho EJ; Kim ST; Youn HD
    Nat Struct Mol Biol; 2005 May; 12(5):423-8. PubMed ID: 15834423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioenergetic state regulates innate inflammatory responses through the transcriptional co-repressor CtBP.
    Shen Y; Kapfhamer D; Minnella AM; Kim JE; Won SJ; Chen Y; Huang Y; Low LH; Massa SM; Swanson RA
    Nat Commun; 2017 Sep; 8(1):624. PubMed ID: 28935892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accumulation of advanced glycation end products promotes atrophic nonunion incidence in mice through a CtBP1/2-dependent mechanism.
    Chen X; Wang C; Zhou D; Zhao G; Li Z; Duan N
    Exp Cell Res; 2023 Nov; 432(1):113765. PubMed ID: 37696386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of CtBP family protein isoforms in breast cancer and their role in chemoresistance.
    Birts CN; Harding R; Soosaipillai G; Halder T; Azim-Araghi A; Darley M; Cutress RI; Bateman AC; Blaydes JP
    Biol Cell; 2010 Jan; 103(1):1-19. PubMed ID: 20964627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PLDLS-dependent interaction of E1A with CtBP: regulation of CtBP nuclear localization and transcriptional functions.
    Zhao LJ; Subramanian T; Vijayalingam S; Chinnadurai G
    Oncogene; 2007 Nov; 26(54):7544-51. PubMed ID: 17546044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. C-terminal binding proteins: central players in development and disease.
    Stankiewicz TR; Gray JJ; Winter AN; Linseman DA
    Biomol Concepts; 2014 Dec; 5(6):489-511. PubMed ID: 25429601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional regulation by C-terminal binding proteins.
    Chinnadurai G
    Int J Biochem Cell Biol; 2007; 39(9):1593-607. PubMed ID: 17336131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NADH/NAD
    Erlandsen H; Jecrois AM; Nichols JC; Cole JL; Royer WE
    FEBS Lett; 2022 Feb; 596(4):479-490. PubMed ID: 34997967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of transforming growth factor-β1-stimulation of Runx2 acetylation for matrix metalloproteinase 13 expression in osteoblastic cells.
    Gomathi K; Rohini M; Partridge NC; Selvamurugan N
    Biol Chem; 2022 Feb; 403(3):305-315. PubMed ID: 34643076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.