These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
978 related articles for article (PubMed ID: 30585492)
1. Enhancing the Performance of Inverted Perovskite Solar Cells via Grain Boundary Passivation with Carbon Quantum Dots. Ma Y; Zhang H; Zhang Y; Hu R; Jiang M; Zhang R; Lv H; Tian J; Chu L; Zhang J; Xue Q; Yip HL; Xia R; Li X; Huang W ACS Appl Mater Interfaces; 2019 Jan; 11(3):3044-3052. PubMed ID: 30585492 [TBL] [Abstract][Full Text] [Related]
2. Passivation of the grain boundaries of CH Guo Q; Yuan F; Zhang B; Zhou S; Zhang J; Bai Y; Fan L; Hayat T; Alsaedi A; Tan Z Nanoscale; 2018 Dec; 11(1):115-124. PubMed ID: 30525161 [TBL] [Abstract][Full Text] [Related]
3. Exfoliated Fluorographene Quantum Dots as Outstanding Passivants for Improved Flexible Perovskite Solar Cells. Yang L; Li Y; Wang L; Pei Y; Wang Z; Zhang Y; Lin H; Li X ACS Appl Mater Interfaces; 2020 May; 12(20):22992-23001. PubMed ID: 32343556 [TBL] [Abstract][Full Text] [Related]
4. Efficient and Stable Carbon-Based Perovskite Solar Cells via Passivation by a Multifunctional Hydrophobic Molecule with Bidentate Anchors. Xu T; Zou K; Lv S; Tang H; Zhang Y; Chen Y; Chen L; Li Z; Huang W ACS Appl Mater Interfaces; 2021 Apr; 13(14):16485-16497. PubMed ID: 33783198 [TBL] [Abstract][Full Text] [Related]
5. Sodium Dodecylbenzene Sulfonate Interface Modification of Methylammonium Lead Iodide for Surface Passivation of Perovskite Solar Cells. Zou Y; Guo R; Buyruk A; Chen W; Xiao T; Yin S; Jiang X; Kreuzer LP; Mu C; Ameri T; Schwartzkopf M; Roth SV; Müller-Buschbaum P ACS Appl Mater Interfaces; 2020 Nov; 12(47):52643-52651. PubMed ID: 33190484 [TBL] [Abstract][Full Text] [Related]
6. Improving the Photovoltage of Blade-Coated MAPbI Abbas M; Cai B; Hu J; Guo F; Mai Y; Yuan XC ACS Appl Mater Interfaces; 2021 Oct; 13(39):46566-46576. PubMed ID: 34570471 [TBL] [Abstract][Full Text] [Related]
7. Grain Enlargement and Defect Passivation with Melamine Additives for High Efficiency and Stable CsPbBr Zhu J; He B; Gong Z; Ding Y; Zhang W; Li X; Zong Z; Chen H; Tang Q ChemSusChem; 2020 Apr; 13(7):1834-1843. PubMed ID: 31971332 [TBL] [Abstract][Full Text] [Related]
9. Fluorinated Oligomer Wrapped Perovskite Crystals for Inverted MAPbI Xie L; Xie J; Wang S; Chen B; Yang C; Wang Z; Liu X; Chen J; Jia K; Hao F ACS Appl Mater Interfaces; 2021 Jun; 13(22):26093-26101. PubMed ID: 34053218 [TBL] [Abstract][Full Text] [Related]
10. Laser fabricated carbon quantum dots in anti-solvent for highly efficient carbon-based perovskite solar cells. Li S; Li Y; Liu K; Chen M; Peng W; Yang Y; Li X J Colloid Interface Sci; 2021 Oct; 600():691-700. PubMed ID: 34049024 [TBL] [Abstract][Full Text] [Related]
11. Interface Passivation of a Pyridine-Based Bifunctional Molecule for Inverted Perovskite Solar Cells. Ye SQ; Yin ZC; Lin HS; Wang WF; Li M; Liu Y; Lei YX; Liu WR; Yang S; Wang GW ACS Appl Mater Interfaces; 2024 Jun; 16(23):30534-30544. PubMed ID: 38818656 [TBL] [Abstract][Full Text] [Related]
12. HPbI He Y; Wang W; Qi L ACS Appl Mater Interfaces; 2018 Nov; 10(45):38985-38993. PubMed ID: 30339348 [TBL] [Abstract][Full Text] [Related]
13. Critical Role of Functional Groups in Defect Passivation and Energy Band Modulation in Efficient and Stable Inverted Perovskite Solar Cells Exceeding 21% Efficiency. Zheng J; Chen J; Ouyang D; Huang Z; He X; Kim J; Choy WCH ACS Appl Mater Interfaces; 2020 Dec; 12(51):57165-57173. PubMed ID: 33296167 [TBL] [Abstract][Full Text] [Related]
14. Pyridalthiadiazole-Based Molecular Chromophores for Defect Passivation Enables High-Performance Perovskite Solar Cells. Min Z; Wang B; Kong Y; Guo J; Ling X; Ma W; Yuan J ChemSusChem; 2024 Sep; ():e202401852. PubMed ID: 39345007 [TBL] [Abstract][Full Text] [Related]
15. Synergistic Passivation With Phenylpropylammonium Bromide for Efficient Inverted Perovskite Solar Cells. Zhu A; Gu H; Li W; Liao J; Xia J; Liang C; Sun G; Sha Z; Xing G Small Methods; 2024 Feb; 8(2):e2300428. PubMed ID: 37328447 [TBL] [Abstract][Full Text] [Related]
16. Enhancing the Stability and Efficiency of Inverted Perovskite Solar Cells with a Mixed Ammonium Ligands Passivation Strategy. Lee HJ; Kang YJ; Kwon SN; Kim DH; Na SI Small Methods; 2024 Mar; 8(3):e2300948. PubMed ID: 38009733 [TBL] [Abstract][Full Text] [Related]
17. Dually-Passivated Perovskite Solar Cells with Reduced Voltage Loss and Increased Super Oxide Resistance. Zhou Q; Gao Y; Cai C; Zhang Z; Xu J; Yuan Z; Gao P Angew Chem Int Ed Engl; 2021 Apr; 60(15):8303-8312. PubMed ID: 33492689 [TBL] [Abstract][Full Text] [Related]
18. Biomaterial Improves the Stability of Perovskite Solar Cells by Passivating Defects and Inhibiting Ion Migration. Liu Z; Su Z; Yu B; Sun Y; Zhang J; Yu H ACS Appl Mater Interfaces; 2024 Jun; 16(24):31218-31227. PubMed ID: 38842482 [TBL] [Abstract][Full Text] [Related]
19. Universal Surface Passivation of Organic-Inorganic Halide Perovskite Films by Tetraoctylammonium Chloride for High-Performance and Stable Perovskite Solar Cells. Abate SY; Zhang Q; Qi Y; Nash J; Gollinger K; Zhu X; Han F; Pradhan N; Dai Q ACS Appl Mater Interfaces; 2022 Jun; 14(24):28044-28059. PubMed ID: 35679233 [TBL] [Abstract][Full Text] [Related]
20. Synchronous Surface Reconstruction and Defect Passivation for High-Performance Inorganic Perovskite Solar Cells. Zhang H; Tian Q; Gu X; Zhang S; Wang Z; Zuo X; Liu Y; Zhao K; Liu SF Small; 2022 Aug; 18(33):e2202690. PubMed ID: 35859526 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]