These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 30586300)

  • 21. Boosting compound-protein interaction prediction by deep learning.
    Tian K; Shao M; Wang Y; Guan J; Zhou S
    Methods; 2016 Nov; 110():64-72. PubMed ID: 27378654
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Next Era: Deep Learning in Pharmaceutical Research.
    Ekins S
    Pharm Res; 2016 Nov; 33(11):2594-603. PubMed ID: 27599991
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep learning for predicting toxicity of chemicals: a mini review.
    Tang W; Chen J; Wang Z; Xie H; Hong H
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):252-271. PubMed ID: 30821199
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Structure-Based Drug Discovery Paradigm.
    Batool M; Ahmad B; Choi S
    Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31174387
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Artificial intelligence in drug design.
    Zhong F; Xing J; Li X; Liu X; Fu Z; Xiong Z; Lu D; Wu X; Zhao J; Tan X; Li F; Luo X; Li Z; Chen K; Zheng M; Jiang H
    Sci China Life Sci; 2018 Oct; 61(10):1191-1204. PubMed ID: 30054833
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving quantitative structure-activity relationship models using Artificial Neural Networks trained with dropout.
    Mendenhall J; Meiler J
    J Comput Aided Mol Des; 2016 Feb; 30(2):177-89. PubMed ID: 26830599
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The power of deep learning to ligand-based novel drug discovery.
    Baskin II
    Expert Opin Drug Discov; 2020 Jul; 15(7):755-764. PubMed ID: 32228116
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling Physico-Chemical ADMET Endpoints with Multitask Graph Convolutional Networks.
    Montanari F; Kuhnke L; Ter Laak A; Clevert DA
    Molecules; 2019 Dec; 25(1):. PubMed ID: 31877719
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Empirical Study of Overfitting in Deep Learning for Predicting Breast Cancer Metastasis.
    Xu C; Coen-Pirani P; Jiang X
    Cancers (Basel); 2023 Mar; 15(7):. PubMed ID: 37046630
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GuacaMol: Benchmarking Models for de Novo Molecular Design.
    Brown N; Fiscato M; Segler MHS; Vaucher AC
    J Chem Inf Model; 2019 Mar; 59(3):1096-1108. PubMed ID: 30887799
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deep-learning: investigating deep neural networks hyper-parameters and comparison of performance to shallow methods for modeling bioactivity data.
    Koutsoukas A; Monaghan KJ; Li X; Huan J
    J Cheminform; 2017 Jun; 9(1):42. PubMed ID: 29086090
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Recurrent Neural Network model to predict blood-brain barrier permeability.
    Alsenan S; Al-Turaiki I; Hafez A
    Comput Biol Chem; 2020 Dec; 89():107377. PubMed ID: 33010784
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep neural nets as a method for quantitative structure-activity relationships.
    Ma J; Sheridan RP; Liaw A; Dahl GE; Svetnik V
    J Chem Inf Model; 2015 Feb; 55(2):263-74. PubMed ID: 25635324
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting the Absorption Potential of Chemical Compounds Through a Deep Learning Approach.
    Shin M; Jang D; Nam H; Lee KH; Lee D
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(2):432-440. PubMed ID: 26930688
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantum Machine Learning Predicting ADME-Tox Properties in Drug Discovery.
    Bhatia AS; Saggi MK; Kais S
    J Chem Inf Model; 2023 Nov; 63(21):6476-6486. PubMed ID: 37603536
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A natural language processing approach based on embedding deep learning from heterogeneous compounds for quantitative structure-activity relationship modeling.
    Bouhedjar K; Boukelia A; Khorief Nacereddine A; Boucheham A; Belaidi A; Djerourou A
    Chem Biol Drug Des; 2020 Sep; 96(3):961-972. PubMed ID: 33058460
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of Deep Neural Network Models in Drug Discovery Programs.
    Grebner C; Matter H; Kofink D; Wenzel J; Schmidt F; Hessler G
    ChemMedChem; 2021 Dec; 16(24):3772-3786. PubMed ID: 34596968
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep learning driven QSAR model for environmental toxicology: Effects of endocrine disrupting chemicals on human health.
    Heo S; Safder U; Yoo C
    Environ Pollut; 2019 Oct; 253():29-38. PubMed ID: 31302400
    [TBL] [Abstract][Full Text] [Related]  

  • 39. QSAR modeling without descriptors using graph convolutional neural networks: the case of mutagenicity prediction.
    Hung C; Gini G
    Mol Divers; 2021 Aug; 25(3):1283-1299. PubMed ID: 34146224
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Practical Applications of Deep Learning To Impute Heterogeneous Drug Discovery Data.
    Irwin BWJ; Levell JR; Whitehead TM; Segall MD; Conduit GJ
    J Chem Inf Model; 2020 Jun; 60(6):2848-2857. PubMed ID: 32478517
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.