These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30586308)

  • 41. Dipolar rearrangement during micellization explored using a potential-sensitive fluorescent probe.
    Sarkar P; Chattopadhyay A
    Chem Phys Lipids; 2015 Oct; 191():91-5. PubMed ID: 26327331
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Current concepts of the mechanism of action of local anesthetics.
    Strichartz GR
    J Dent Res; 1981 Aug; 60(8):1460-70. PubMed ID: 6265515
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Di- and tri-oxalkyl derivatives of a boron dipyrromethene (BODIPY) rotor dye in lipid bilayers.
    Olšinová M; Jurkiewicz P; Pozník M; Šachl R; Prausová T; Hof M; Kozmík V; Teplý F; Svoboda J; Cebecauer M
    Phys Chem Chem Phys; 2014 Jun; 16(22):10688-97. PubMed ID: 24756382
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spectra of voltage-sensitive fluorescence of styryl-dye in neuron membrane.
    Fromherz P; Lambacher A
    Biochim Biophys Acta; 1991 Sep; 1068(2):149-56. PubMed ID: 1911828
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Orientational polarisability of lipid membrane surfaces.
    Le Goff G; Vitha MF; Clarke RJ
    Biochim Biophys Acta; 2007 Mar; 1768(3):562-70. PubMed ID: 17178101
    [TBL] [Abstract][Full Text] [Related]  

  • 46. How to link pyrene to its host lipid to minimize the extent of membrane perturbations and to optimize pyrene dimer formation.
    Fraňová MD; Repáková J; Holopainen JM; Vattulainen I
    Chem Phys Lipids; 2014 Jan; 177():19-25. PubMed ID: 24216154
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Potential-modulated fluorescence spectroscopy of the membrane potential-sensitive dye di-4-ANEPPS at the 1,2-dichloroethane/water interface.
    Osakai T; Sawada J; Nagatani H
    Anal Bioanal Chem; 2009 Oct; 395(4):1055-61. PubMed ID: 19588129
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An Optical Technique for Mapping Microviscosity Dynamics in Cellular Organelles.
    Chambers JE; Kubánková M; Huber RG; López-Duarte I; Avezov E; Bond PJ; Marciniak SJ; Kuimova MK
    ACS Nano; 2018 May; 12(5):4398-4407. PubMed ID: 29648785
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Differential interactions of two local anesthetics with phospholipid membrane and nonerythroid spectrin: Localization in presence of cholesterol and ganglioside, GM1.
    Chakrabarti A; Patra M
    Biochim Biophys Acta; 2015 Mar; 1848(3):821-32. PubMed ID: 25482358
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Blue-Light-Emitting BODIPY Probe for Lipid Membranes.
    Bacalum M; Wang L; Boodts S; Yuan P; Leen V; Smisdom N; Fron E; Knippenberg S; Fabre G; Trouillas P; Beljonne D; Dehaen W; Boens N; Ameloot M
    Langmuir; 2016 Apr; 32(14):3495-505. PubMed ID: 27003513
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Organization of inner cellular components as reported by a viscosity-sensitive fluorescent Bodipy probe suitable for phasor approach to FLIM.
    Ferri G; Nucara L; Biver T; Battisti A; Signore G; Bizzarri R
    Biophys Chem; 2016 Jan; 208():17-25. PubMed ID: 26127025
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dipole potentials and spontaneous curvature: membrane properties that could mediate anesthesia.
    Cafiso DS
    Toxicol Lett; 1998 Nov; 100-101():431-9. PubMed ID: 10049176
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Membrane dipole potential as measured by ratiometric 3-hydroxyflavone fluorescence probes: accounting for hydration effects.
    M'Baye G; Shynkar VV; Klymchenko AS; Mély Y; Duportail G
    J Fluoresc; 2006 Jan; 16(1):35-42. PubMed ID: 16400505
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Membrane Dipole Potential: An Emerging Approach to Explore Membrane Organization and Function.
    Sarkar P; Chattopadhyay A
    J Phys Chem B; 2022 Jun; 126(24):4415-4430. PubMed ID: 35696090
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Investigation of oxidation in freeze-dried membranes using the fluorescent probe C11-BODIPY(581/591).
    Carlsen CU; Kurtmann L; Brüggemann DA; Hoff S; Risbo J; Skibsted LH
    Cryobiology; 2009 Jun; 58(3):262-7. PubMed ID: 19444971
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Membrane organization and dynamics of the serotonin1A receptor in live cells.
    Saxena R; Chattopadhyay A
    J Neurochem; 2011 Mar; 116(5):726-33. PubMed ID: 21214564
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ligand binding and G-protein coupling of the serotonin1A receptor in cholesterol-enriched hippocampal membranes.
    Chattopadhyay A; Jafurulla M; Pucadyil TJ
    Biosci Rep; 2006 Apr; 26(2):79-87. PubMed ID: 16763764
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Diffusion of nitric oxide and oxygen in lipoproteins and membranes studied by pyrene fluorescence quenching.
    Möller MN; Denicola A
    Free Radic Biol Med; 2018 Nov; 128():137-143. PubMed ID: 29673655
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cellular imaging using BODIPY-, pyrene- and phthalocyanine-based conjugates.
    Bizet F; Ipuy M; Bernhard Y; Lioret V; Winckler P; Goze C; Perrier-Cornet JM; Decréau RA
    Bioorg Med Chem; 2018 Jan; 26(2):413-420. PubMed ID: 29254896
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cholesterol and Cardiolipin Importance in Local Anesthetics-Membrane Interactions: The Langmuir Monolayer Study.
    Mildner J; Wnętrzak A; Dynarowicz-Latka P
    J Membr Biol; 2019 Feb; 252(1):31-39. PubMed ID: 30506104
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.