These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 30586327)

  • 1. Effect of Chlorine-Induced Sublethal Oxidative Stress on the Biofilm-Forming Ability of Salmonella at Different Temperatures, Nutrient Conditions, and Substrates.
    Dhakal J; Sharma CS; Nannapaneni R; McDANIEL CD; Kim T; Kiess A
    J Food Prot; 2019 Jan; 82(1):78-92. PubMed ID: 30586327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homologous stress adaptation, antibiotic resistance, and biofilm forming ability of Salmonella enterica serovar Heidelberg ATCC8326 on different food-contact surfaces following exposure to sublethal chlorine concentrations1.
    Obe T; Nannapaneni R; Sharma CS; Kiess A
    Poult Sci; 2018 Mar; 97(3):951-961. PubMed ID: 29346603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic Inactivation of Pathogenic and Nonpathogenic Bacteria in Biofilms in Combination with Chlorine.
    Kim MJ; Lim ES; Kim JS
    J Food Prot; 2019 Apr; 82(4):605-614. PubMed ID: 30907667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biofilm formation and sporulation by Bacillus cereus on a stainless steel surface and subsequent resistance of vegetative cells and spores to chlorine, chlorine dioxide, and a peroxyacetic acid-based sanitizer.
    Ryu JH; Beuchat LR
    J Food Prot; 2005 Dec; 68(12):2614-22. PubMed ID: 16355833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature and nutrient effects on Campylobacter jejuni attachment on multispecies biofilms on stainless steel.
    Sanders SQ; Frank JF; Arnold JW
    J Food Prot; 2008 Feb; 71(2):271-8. PubMed ID: 18326175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sublethal chlorine stress promotes the biofilm-forming ability of Salmonella enterica serovars enteritidis and expression of the related genes.
    Zarei M; Paknejad M; Eskandari MH
    Food Microbiol; 2023 Jun; 112():104232. PubMed ID: 36906303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rugose Morphotype in
    Bansal M; Nannapaneni R; Kode D; Chang S; Sharma CS; McDaniel C; Kiess A
    Front Microbiol; 2019; 10():2704. PubMed ID: 31827464
    [No Abstract]   [Full Text] [Related]  

  • 8. Resistance of pathogenic bacteria on the surface of stainless steel depending on attachment form and efficacy of chemical sanitizers.
    Bae YM; Baek SY; Lee SY
    Int J Food Microbiol; 2012 Feb; 153(3):465-73. PubMed ID: 22225983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biofilm Production Potential of
    Akinola SA; Tshimpamba ME; Mwanza M; Ateba CN
    Pol J Microbiol; 2020 Dec; 69(4):427-439. PubMed ID: 33574871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variability of Listeria monocytogenes strains in biofilm formation on stainless steel and polystyrene materials and resistance to peracetic acid and quaternary ammonium compounds.
    Poimenidou SV; Chrysadakou M; Tzakoniati A; Bikouli VC; Nychas GJ; Skandamis PN
    Int J Food Microbiol; 2016 Nov; 237():164-171. PubMed ID: 27585076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting adhesion and biofilm formation boundaries on stainless steel surfaces by five Salmonella enterica strains belonging to different serovars as a function of pH, temperature and NaCl concentration.
    Moraes JO; Cruz EA; Souza EGF; Oliveira TCM; Alvarenga VO; Peña WEL; Sant'Ana AS; Magnani M
    Int J Food Microbiol; 2018 Sep; 281():90-100. PubMed ID: 29843904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of biofilm at different nutrient levels by various genotypes of Listeria monocytogenes.
    Folsom JP; Siragusa GR; Frank JF
    J Food Prot; 2006 Apr; 69(4):826-34. PubMed ID: 16629025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition and inactivation of Salmonella typhimurium biofilms from polystyrene and stainless steel surfaces by essential oils and phenolic constituent carvacrol.
    Soni KA; Oladunjoye A; Nannapaneni R; Schilling MW; Silva JL; Mikel B; Bailey RH
    J Food Prot; 2013 Feb; 76(2):205-12. PubMed ID: 23433366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of biofilm formation by pathogenic and spoilage microorganisms under conditions that mimic the poultry, meat, and egg processing industries.
    Iñiguez-Moreno M; Gutiérrez-Lomelí M; Avila-Novoa MG
    Int J Food Microbiol; 2019 Aug; 303():32-41. PubMed ID: 31129476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biofilm Formation of Staphylococcus aureus on Various Surfaces and Their Resistance to Chlorine Sanitizer.
    Lee JS; Bae YM; Lee SY; Lee SY
    J Food Sci; 2015 Oct; 80(10):M2279-86. PubMed ID: 26417663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Propensity for biofilm formation by aerobic mesophilic and thermophilic spore forming bacteria isolated from Chinese milk powders.
    Sadiq FA; Flint S; Yuan L; Li Y; Liu T; He G
    Int J Food Microbiol; 2017 Dec; 262():89-98. PubMed ID: 28968534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A systematic characterization of the distribution, biofilm-forming potential and the resistance of the biofilms to the CIP processes of the bacteria in a milk powder processing factory.
    Zou M; Liu D
    Food Res Int; 2018 Nov; 113():316-326. PubMed ID: 30195526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of biofilms by Listeria monocytogenes under various growth conditions.
    Moltz AG; Martin SE
    J Food Prot; 2005 Jan; 68(1):92-7. PubMed ID: 15690808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chlorine resistance of Listeria monocytogenes biofilms and relationship to subtype, cell density, and planktonic cell chlorine resistance.
    Folsom JP; Frank JF
    J Food Prot; 2006 Jun; 69(6):1292-6. PubMed ID: 16786848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attachment of and biofilm formation by Enterobacter sakazakii on stainless steel and enteral feeding tubes.
    Kim H; Ryu JH; Beuchat LR
    Appl Environ Microbiol; 2006 Sep; 72(9):5846-56. PubMed ID: 16957203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.