These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30586403)

  • 1. Oscillatory dynamics in a discrete predator-prey model with distributed delays.
    Xu C; Chen L; Li P; Guo Y
    PLoS One; 2018; 13(12):e0208322. PubMed ID: 30586403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Almost periodic solution of non-autonomous Lotka-Volterra predator-prey dispersal system with delays.
    Meng X; Chen L
    J Theor Biol; 2006 Dec; 243(4):562-74. PubMed ID: 16934297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploration on dynamics in a discrete predator-prey competitive model involving feedback controls.
    Xu C; Cui X; Li P; Yan J; Yao L
    J Biol Dyn; 2023 Dec; 17(1):2220349. PubMed ID: 37272309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supercritical and subcritical Hopf-bifurcations in a two-delayed prey-predator system with density-dependent mortality of predator and strong Allee effect in prey.
    Banerjee J; Sasmal SK; Layek RK
    Biosystems; 2019 Jun; 180():19-37. PubMed ID: 30851345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global stability results for a generalized Lotka-Volterra system with distributed delays. Applications to predator-prey and to epidemic systems.
    Beretta E; Capasso V; Rinaldi F
    J Math Biol; 1988; 26(6):661-88. PubMed ID: 3230365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics analysis of a delayed reaction-diffusion predator-prey system with non-continuous threshold harvesting.
    Zhang X; Zhao H
    Math Biosci; 2017 Jul; 289():130-141. PubMed ID: 28529143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predator-prey-subsidy population dynamics on stepping-stone domains with dispersal delays.
    Eide RM; Krause AL; Fadai NT; Van Gorder RA
    J Theor Biol; 2018 Aug; 451():19-34. PubMed ID: 29723541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of fear factor and self-defence on the dynamics of predator-prey model with digestion delay.
    Li J; Liu X; Wei C
    Math Biosci Eng; 2021 Jun; 18(5):5478-5504. PubMed ID: 34517497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A stochastic predator-prey model with Holling II increasing function in the predator.
    Huang Y; Shi W; Wei C; Zhang S
    J Biol Dyn; 2021 Dec; 15(1):1-18. PubMed ID: 33357105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A time delay predator-prey system with three-stage-structure.
    Gao Q; Jin Z
    ScientificWorldJournal; 2014; 2014():512838. PubMed ID: 25143982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical Model of the Dynamics of Fish, Waterbirds and Tourists in the Djoudj National Park, Senegal.
    Diop O; Sène A
    Acta Biotheor; 2016 Dec; 64(4):447-468. PubMed ID: 27704263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global stability of the boundary solution of a nonautonomous predator-prey system with Beddington-DeAngelis functional response.
    Bai D; Li J; Zeng W
    J Biol Dyn; 2020 Dec; 14(1):421-437. PubMed ID: 32498616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Permanence of a predator-prey discrete system with Holling-IV functional response and distributed delays.
    Zhang X; Wu Z; Zhou T
    J Biol Dyn; 2016; 10():1-17. PubMed ID: 26496233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Periodic solution of a stage-structured predator-prey model incorporating prey refuge.
    Lu WJ; Xia YH; Bai YZ
    Math Biosci Eng; 2020 Apr; 17(4):3160-3174. PubMed ID: 32987522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bifurcation analysis in a singular Beddington-DeAngelis predator-prey model with two delays and nonlinear predator harvesting.
    Meng XY; Wu YQ
    Math Biosci Eng; 2019 Mar; 16(4):2668-2696. PubMed ID: 31137232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discrete-time predator-prey model with flip bifurcation and chaos control.
    Khan AQ; Ahmad I; Alayachi HS; M Noorani MS; Khaliq A
    Math Biosci Eng; 2020 Sep; 17(5):5944-5960. PubMed ID: 33120584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global behaviour of a predator-prey like model with piecewise constant arguments.
    Kartal S; Gurcan F
    J Biol Dyn; 2015; 9():159-71. PubMed ID: 26040292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ecoepidemic predator-prey model with feeding satiation, prey herd behavior and abandoned infected prey.
    Kooi BW; Venturino E
    Math Biosci; 2016 Apr; 274():58-72. PubMed ID: 26874217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the dynamics of one-prey-n-predator impulsive reaction-diffusion predator-prey system with ratio-dependent functional response.
    Liu Z; Zhang L; Bi P; Pang J; Li B; Fang C
    J Biol Dyn; 2018 Dec; 12(1):551-576. PubMed ID: 29962293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability analysis of a prey refuge predator-prey model with Allee effects.
    Ufuktepe U; Kulahcioglu B; Akman O
    J Biosci; 2019 Sep; 44(4):. PubMed ID: 31502563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.