These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30586427)

  • 1. Do relationships between leaf traits and fire behaviour of leaf litter beds persist in time?
    Kauf Z; Damsohn W; Fangmeier A
    PLoS One; 2018; 13(12):e0209780. PubMed ID: 30586427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Litter Species Composition and Topographic Effects on Fuels and Modeled Fire Behavior in an Oak-Hickory Forest in the Eastern USA.
    Dickinson MB; Hutchinson TF; Dietenberger M; Matt F; Peters MP
    PLoS One; 2016; 11(8):e0159997. PubMed ID: 27536964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of fire severity on macroinvertebrate detritivores and leaf litter decomposition.
    Buckingham S; Murphy N; Gibb H
    PLoS One; 2015; 10(4):e0124556. PubMed ID: 25880062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using a rainforest-flame forest mosaic to test the hypothesis that leaf and litter fuel flammability is under natural selection.
    Clarke PJ; Prior LD; French BJ; Vincent B; Knox KJ; Bowman DM
    Oecologia; 2014 Dec; 176(4):1123-33. PubMed ID: 25234374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of leaf morphology on litter flammability and its utility for interpreting palaeofire.
    Belcher CM
    Philos Trans R Soc Lond B Biol Sci; 2016 Jun; 371(1696):. PubMed ID: 27216520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Are litter decomposition and fire linked through plant species traits?
    Cornelissen JHC; Grootemaat S; Verheijen LM; Cornwell WK; van Bodegom PM; van der Wal R; Aerts R
    New Phytol; 2017 Nov; 216(3):653-669. PubMed ID: 28892160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flammability properties of British heathland and moorland vegetation: models for predicting fire ignition.
    Santana VM; Marrs RH
    J Environ Manage; 2014 Jun; 139():88-96. PubMed ID: 24681648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Fire behavior of Mongolian oak leaves fuel-bed under no-wind and zero-slope conditions. I. Factors affecting fire spread rate and modeling].
    Jin S; Liu BF; Di XY; Chu TF; Zhang JL
    Ying Yong Sheng Tai Xue Bao; 2012 Jan; 23(1):51-9. PubMed ID: 22489479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-frequency fire alters C : N : P stoichiometry in forest litter.
    Toberman H; Chen C; Lewis T; Elser JJ
    Glob Chang Biol; 2014 Jul; 20(7):2321-31. PubMed ID: 24132817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flammability across the gymnosperm phylogeny: the importance of litter particle size.
    Cornwell WK; Elvira A; van Kempen L; van Logtestijn RS; Aptroot A; Cornelissen JH
    New Phytol; 2015 Apr; 206(2):672-81. PubMed ID: 25675853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Examining the relative effects of fire weather, suppression and fuel treatment on fire behaviour--a simulation study.
    Penman TD; Collins L; Price OF; Bradstock RA; Metcalf S; Chong DM
    J Environ Manage; 2013 Dec; 131():325-33. PubMed ID: 24211380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dynamics and drivers of fuel and fire in the Portuguese public forest.
    Fernandes PM; Loureiro C; Guiomar N; Pezzatti GB; Manso FT; Lopes L
    J Environ Manage; 2014 Dec; 146():373-382. PubMed ID: 25203440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Fire behavior of Quercus mongolica leaf litter fuelbed under zero-slope and no-wind conditions. II. Analysis and modelling of fireline intensity, fuel consumption, and combustion efficiency].
    Zhang JL; Liu BF; Di XY; Chu TF; Jin S
    Ying Yong Sheng Tai Xue Bao; 2013 Dec; 24(12):3381-90. PubMed ID: 24697055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seasonal and local differences in leaf litter flammability of six Mediterranean tree species.
    Kauf Z; Fangmeier A; Rosavec R; Španjol Ž
    Environ Manage; 2015 Mar; 55(3):687-701. PubMed ID: 25537154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Fire behavior of Mongolian oak leaves fuel bed under no-wind and zero-slope conditions. II. Analysis of the factors affecting flame length and residence time and related prediction models].
    Zhang JL; Liu BF; Di XY; Chu TF; Jin S
    Ying Yong Sheng Tai Xue Bao; 2012 Nov; 23(11):3149-56. PubMed ID: 23431803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The drivers of wildfire enlargement do not exhibit scale thresholds in southeastern Australian forests.
    Price OF; Penman T; Bradstock R; Borah R
    J Environ Manage; 2016 Oct; 181():208-217. PubMed ID: 27353371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flammability of Two Mediterranean Mixed Forests: Study of the Non-additive Effect of Fuel Mixtures in Laboratory.
    Della Rocca G; Danti R; Hernando C; Guijarro M; Madrigal J
    Front Plant Sci; 2018; 9():825. PubMed ID: 30013581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermocouple Probe Orientation Affects Prescribed Fire Behavior Estimation.
    Coates TA; Chow AT; Hagan DL; Waldrop TA; Wang GG; Bridges WC; Rogers MF; Dozier JH
    J Environ Qual; 2018 Jan; 47(1):170-176. PubMed ID: 29415103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Weather and Fuel as Modulators of Grassland Fire Behavior in the Northern Great Plains.
    McGranahan DA; Zopfi ME; Yurkonis KA
    Environ Manage; 2023 May; 71(5):940-949. PubMed ID: 36525066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developing customized fuel models for shrub and bracken communities in Galicia (NW Spain).
    Vega JA; Álvarez-González JG; Arellano-Pérez S; Fernández C; Cuiñas P; Jiménez E; Fernández-Alonso JM; Fontúrbel T; Alonso-Rego C; Ruiz-González AD
    J Environ Manage; 2024 Feb; 351():119831. PubMed ID: 38134501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.