These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 30586830)

  • 1. Comparative analyses of different biogenic CO
    Liu W; Zhu Q; Zhou X; Peng C
    Sci Total Environ; 2019 Feb; 652():1456-1462. PubMed ID: 30586830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the Global Warming Potential of Biogenic CO
    Liu W; Zhang Z; Xie X; Yu Z; von Gadow K; Xu J; Zhao S; Yang Y
    Sci Rep; 2017 Jan; 7():39857. PubMed ID: 28045111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atmospheric CO2 capture by algae: Negative carbon dioxide emission path.
    Moreira D; Pires JCM
    Bioresour Technol; 2016 Sep; 215():371-379. PubMed ID: 27005790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biogenic CO2 fluxes, changes in surface albedo and biodiversity impacts from establishment of a miscanthus plantation.
    Jørgensen SV; Cherubini F; Michelsen O
    J Environ Manage; 2014 Dec; 146():346-354. PubMed ID: 25194521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of CO
    Amin NAS; Talebian-Kiakalaieh A
    Waste Manag; 2018 Mar; 73():256-264. PubMed ID: 29150259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrate carbon dynamic models in analyzing carbon sequestration impact of forest biomass harvest.
    Yan Y
    Sci Total Environ; 2018 Feb; 615():581-587. PubMed ID: 28988094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of Biogenic Carbon Neutrality Assumption for Achieving a Net-Zero Emission Target: Insights from a Techno-Economic Analysis.
    Kouchaki-Penchah H; Bahn O; Vaillancourt K; Moreau L; Thiffault E; Levasseur A
    Environ Sci Technol; 2023 Jul; 57(29):10615-10628. PubMed ID: 37432042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of biomass and carbon sequestration across a chronosequence of Caragana intermedia plantations on alpine sandy land.
    Li Q; Jia Z; Feng L; He L; Yang K
    Sci Rep; 2018 Aug; 8(1):12432. PubMed ID: 30127413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global warming implications from increased forest biomass utilization for bioenergy in a supply-constrained context.
    Saez de Bikuña K; Garcia R; Dias AC; Freire F
    J Environ Manage; 2020 Jun; 263():110292. PubMed ID: 32883484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioenergy from forestry and changes in atmospheric CO2: reconciling single stand and landscape level approaches.
    Cherubini F; Guest G; Strømman AH
    J Environ Manage; 2013 Nov; 129():292-301. PubMed ID: 23974446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Well below 2 °C: Mitigation strategies for avoiding dangerous to catastrophic climate changes.
    Xu Y; Ramanathan V
    Proc Natl Acad Sci U S A; 2017 Sep; 114(39):10315-10323. PubMed ID: 28912354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental and energetic analysis of coupling a biogas combined cycle power plant with carbon capture, organic Rankine cycles and CO
    Esquivel-Patiño GG; Nápoles-Rivera F
    J Environ Manage; 2021 Dec; 300():113746. PubMed ID: 34562822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rate of warming affects temperature sensitivity of anaerobic peat decomposition and greenhouse gas production.
    Sihi D; Inglett PW; Gerber S; Inglett KS
    Glob Chang Biol; 2018 Jan; 24(1):e259-e274. PubMed ID: 28746792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential impacts of climate change on carbon dynamics in a rain-fed agro-ecosystem on the Loess Plateau of China.
    Qiu L; Hao M; Wu Y
    Sci Total Environ; 2017 Jan; 577():267-278. PubMed ID: 27829504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Consideration of black carbon and primary organic carbon emissions in life-cycle analysis of Greenhouse gas emissions of vehicle systems and fuels.
    Cai H; Wang MQ
    Environ Sci Technol; 2014 Oct; 48(20):12445-53. PubMed ID: 25259852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biorefineries of carbon dioxide: From carbon capture and storage (CCS) to bioenergies production.
    Cheah WY; Ling TC; Juan JC; Lee DJ; Chang JS; Show PL
    Bioresour Technol; 2016 Sep; 215():346-356. PubMed ID: 27090405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forests, carbon and global climate.
    Malhi Y; Meir P; Brown S
    Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1567-91. PubMed ID: 12460485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renewable carbon feedstock for polymers: environmental benefits from synergistic use of biomass and CO
    Bachmann M; Kätelhön A; Winter B; Meys R; Müller LJ; Bardow A
    Faraday Discuss; 2021 Jul; 230():227-246. PubMed ID: 33889872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods for determining the biomass content of waste.
    Staber W; Flamme S; Feltner J
    Waste Manag Res; 2008 Feb; 26(1):78-87. PubMed ID: 18338704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon sequestration capacity of shifting sand dune after establishing new vegetation in the Tengger Desert, northern China.
    Yang H; Li X; Wang Z; Jia R; Liu L; Chen Y; Wei Y; Gao Y; Li G
    Sci Total Environ; 2014 Apr; 478():1-11. PubMed ID: 24530579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.