These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30586941)

  • 1. Microfluidic Long-Term Gradient Generator with Axon Separation Prototyped by 185 nm Diffused Light Photolithography of SU-8 Photoresist.
    Futai N; Tamura M; Ogawa T; Tanaka M
    Micromachines (Basel); 2018 Dec; 10(1):. PubMed ID: 30586941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple microfluidic gradient generator with a soft-lithographically prototyped, high-aspect-ratio, ~2 µm wide microchannel.
    Ogawa T; Matsunaga N; Inomata S; Tanaka M; Futai N
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5521-4. PubMed ID: 24110987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple Multi-level Microchannel Fabrication by Pseudo-Grayscale Backside Diffused Light Lithography.
    Lai D; Labuz JM; Kim J; Luker GD; Shikanov A; Takayama S
    RSC Adv; 2013 Nov; 3(42):19467-19473. PubMed ID: 24976950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid Prototyping of Organ-on-a-Chip Devices Using Maskless Photolithography.
    Kasi DG; de Graaf MNS; Motreuil-Ragot PA; Frimat JMS; Ferrari MD; Sarro PM; Mastrangeli M; van den Maagdenberg AMJM; Mummery CL; Orlova VV
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maskless photolithography using UV LEDs.
    Guijt RM; Breadmore MC
    Lab Chip; 2008 Aug; 8(8):1402-4. PubMed ID: 18651086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Make it simple: long-term stable gradient generation in a microfluidic microdevice.
    Parittotokkaporn S; Dravid A; Bansal M; Aqrawe Z; Svirskis D; Suresh V; O'Carroll SJ
    Biomed Microdevices; 2019 Jul; 21(3):77. PubMed ID: 31346791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ECM-based microfluidic gradient generator for tunable surface environment by interstitial flow.
    Shimizu A; Goh WH; Itai S; Karyappa R; Hashimoto M; Onoe H
    Biomicrofluidics; 2020 Jul; 14(4):044106. PubMed ID: 32699566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of 3D multi-layer microfluidic gradient generator.
    Ha JH; Kim TH; Lee JM; Ahrberg CD; Chung BG
    Electrophoresis; 2017 Jan; 38(2):270-277. PubMed ID: 27801504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous generation of gradients with gradually changed slope in a microfluidic device for quantifying axon response.
    Xiao RR; Zeng WJ; Li YT; Zou W; Wang L; Pei XF; Xie M; Huang WH
    Anal Chem; 2013 Aug; 85(16):7842-50. PubMed ID: 23865632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Axon Guidance Studies Using a Microfluidics-Based Chemotropic Gradient Generator.
    Pujic Z; Nguyen H; Glass N; Cooper-White J; Goodhill GJ
    Methods Mol Biol; 2016; 1407():273-85. PubMed ID: 27271909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of a hybrid PDMS/SU-8/quartz microfluidic chip for enhancing UV absorption whole-channel imaging detection sensitivity and application for isoelectric focusing of proteins.
    Ou J; Glawdel T; Ren CL; Pawliszyn J
    Lab Chip; 2009 Jul; 9(13):1926-32. PubMed ID: 19532968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multilevel microfluidics via single-exposure photolithography.
    Toepke MW; Kenis PJ
    J Am Chem Soc; 2005 Jun; 127(21):7674-5. PubMed ID: 15913346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photolithography-Based Nanopatterning Using Re-entrant Photoresist Profile.
    Kim TJ; Jung YH; Zhang H; Kim K; Lee J; Ma Z
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):8117-8123. PubMed ID: 29345131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of concentration gradient by controlled flow distribution and diffusive mixing in a microfluidic chip.
    Yang M; Yang J; Li CW; Zhao J
    Lab Chip; 2002 Aug; 2(3):158-63. PubMed ID: 15100827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Customizable and Low-Cost Ultraviolet Exposure System for Photolithography.
    Reynolds DE; Lewallen O; Galanis G; Ko J
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio.
    Hattori K; Sugiura S; Kanamori T
    Lab Chip; 2009 Jun; 9(12):1763-72. PubMed ID: 19495461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photocyanation of pyrene across an oil/water interface in a polymer microchannel chip.
    Ueno K; Kitagawa F; Kitamura N
    Lab Chip; 2002 Nov; 2(4):231-4. PubMed ID: 15100816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-step photolithography to fabricate multilevel microchannels.
    Choi S; Park JK
    Biomicrofluidics; 2010 Nov; 4(4):46503. PubMed ID: 21139701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of SU-8 to make a Ni master-mold: Adhesion, sidewall profile, and removal.
    Kim SJ; Yang H; Kim K; Lim YT; Pyo HB
    Electrophoresis; 2006 Aug; 27(16):3284-96. PubMed ID: 16915575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconfigurable microfluidic device with discretized sidewall.
    Oono M; Yamaguchi K; Rasyid A; Takano A; Tanaka M; Futai N
    Biomicrofluidics; 2017 May; 11(3):034103. PubMed ID: 28503247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.