These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 30587377)

  • 1. A Deep Neural Network-based method for estimation of 3D lifting motions.
    Mehrizi R; Peng X; Xu X; Zhang S; Li K
    J Biomech; 2019 Feb; 84():87-93. PubMed ID: 30587377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computer vision based method for 3D posture estimation of symmetrical lifting.
    Mehrizi R; Peng X; Xu X; Zhang S; Metaxas D; Li K
    J Biomech; 2018 Mar; 69():40-46. PubMed ID: 29398001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel dataset and deep learning-based approach for marker-less motion capture during gait.
    Vafadar S; Skalli W; Bonnet-Lebrun A; Khalifé M; Renaudin M; Hamza A; Gajny L
    Gait Posture; 2021 May; 86():70-76. PubMed ID: 33711613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards the Use of 2D Video-Based Markerless Motion Capture to Measure and Parameterize Movement During Functional Capacity Evaluation.
    Remedios SM; Fischer SL
    J Occup Rehabil; 2021 Dec; 31(4):754-767. PubMed ID: 34515942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep learning approach for pose estimation from volumetric OCT data.
    Gessert N; Schlüter M; Schlaefer A
    Med Image Anal; 2018 May; 46():162-179. PubMed ID: 29550582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Deep Learning Framework for Accurate Vehicle Yaw Angle Estimation from a Monocular Camera Based on Part Arrangement.
    Huang W; Li W; Tang L; Zhu X; Zou B
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous ambulatory hand force monitoring during manual materials handling using instrumented force shoes and an inertial motion capture suit.
    Faber GS; Koopman AS; Kingma I; Chang CC; Dennerlein JT; van Dieën JH
    J Biomech; 2018 Mar; 70():235-241. PubMed ID: 29157658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of deep learning pose estimates for sports collision tracking.
    Blythman R; Saxena M; Tierney GJ; Richter C; Smolic A; Simms C
    J Sports Sci; 2022 Sep; 40(17):1885-1900. PubMed ID: 36093680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A self-supervised spatio-temporal attention network for video-based 3D infant pose estimation.
    Yin W; Chen L; Huang X; Huang C; Wang Z; Bian Y; Wan Y; Zhou Y; Han T; Yi M
    Med Image Anal; 2024 Aug; 96():103208. PubMed ID: 38788327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Definition of anatomical zero positions for assessing shoulder pose with 3D motion capture during bilateral abduction of the arms.
    Rettig O; Krautwurst B; Maier MW; Wolf SI
    BMC Musculoskelet Disord; 2015 Dec; 16():383. PubMed ID: 26646907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of height and load weight on shoulder muscle work during overhead lifting task.
    Blache Y; Desmoulins L; Allard P; Plamondon A; Begon M
    Ergonomics; 2015; 58(5):748-61. PubMed ID: 25403553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MeshLifter: Weakly Supervised Approach for 3D Human Mesh Reconstruction from a Single 2D Pose Based on Loop Structure.
    Jeong S; Chang JY
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications and limitations of current markerless motion capture methods for clinical gait biomechanics.
    Wade L; Needham L; McGuigan P; Bilzon J
    PeerJ; 2022; 10():e12995. PubMed ID: 35237469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unified End-to-End YOLOv5-HR-TCM Framework for Automatic 2D/3D Human Pose Estimation for Real-Time Applications.
    Nguyen HC; Nguyen TH; Scherer R; Le VH
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing manual lifting tasks based on segment angle interpolations.
    Chang CC; Xu X; Faber GS; Kingma I; Dennerlein J
    Work; 2012; 41 Suppl 1():2360-3. PubMed ID: 22317068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Shoulder Range of Motion Quantified with Mobile Phone Video-Based Skeletal Tracking and 3D Motion Capture-Preliminary Study.
    van den Hoorn W; Lavaill M; Cutbush K; Gupta A; Kerr G
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using a marker-less method for estimating L5/S1 moments during symmetrical lifting.
    Mehrizi R; Xu X; Zhang S; Pavlovic V; Metaxas D; Li K
    Appl Ergon; 2017 Nov; 65():541-550. PubMed ID: 28110917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anatomical-Marker-Driven 3D Markerless Human Motion Capture.
    Jatesiktat P; Lim GM; Lim WS; Ang WT
    IEEE J Biomed Health Inform; 2024 Jul; PP():. PubMed ID: 38980775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LHPE-nets: A lightweight 2D and 3D human pose estimation model with well-structural deep networks and multi-view pose sample simplification method.
    Wang H; Sun MH; Zhang H; Dong LY
    PLoS One; 2022; 17(2):e0264302. PubMed ID: 35196346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A contactless method to measure real-time finger motion using depth-based pose estimation.
    Zhu Y; Lu W; Gan W; Hou W
    Comput Biol Med; 2021 Apr; 131():104282. PubMed ID: 33631496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.