BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 30587391)

  • 1. A novel dynamical approach in continuous cuffless blood pressure estimation based on ECG and PPG signals.
    Sharifi I; Goudarzi S; Khodabakhshi MB
    Artif Intell Med; 2019 Jun; 97():143-151. PubMed ID: 30587391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cuffless Blood Pressure Estimation Using Pulse Transit Time and Photoplethysmogram Intensity Ratio.
    Gholamhosseini H; Baig M; Rastegar S; Lindén M
    Stud Health Technol Inform; 2018; 249():77-83. PubMed ID: 29866960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous Cuffless Blood Pressure Estimation Using Pulse Transit Time and Photoplethysmogram Intensity Ratio.
    Ding XR; Zhang YT; Liu J; Dai WX; Tsang HK
    IEEE Trans Biomed Eng; 2016 May; 63(5):964-972. PubMed ID: 26415147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New photoplethysmogram indicators for improving cuffless and continuous blood pressure estimation accuracy.
    Lin WH; Wang H; Samuel OW; Liu G; Huang Z; Li G
    Physiol Meas; 2018 Feb; 39(2):025005. PubMed ID: 29319536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using a new PPG indicator to increase the accuracy of PTT-based continuous cuffless blood pressure estimation.
    Wan-Hua Lin ; Hui Wang ; Samuel OW; Guanglin Li
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():738-741. PubMed ID: 29059978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoplethysmogram intensity ratio: A potential indicator for improving the accuracy of PTT-based cuffless blood pressure estimation.
    Ding XR; Zhang YT
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():398-401. PubMed ID: 26736283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time.
    Li Y; Wang Z; Zhang L; Yang X; Song J
    Australas Phys Eng Sci Med; 2014 Jun; 37(2):367-76. PubMed ID: 24722801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Causal inference based cuffless blood pressure estimation: A pilot study.
    Liu L; Zhang YT; Wang W; Chen Y; Ding X
    Comput Biol Med; 2023 Jun; 159():106900. PubMed ID: 37087777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A chair for cuffless real-time estimation of systolic blood pressure based on pulse transit time.
    Tang Z; Sekine M; Tamura T; Yoshida M; Chen W
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5118-21. PubMed ID: 26737443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blood Pressure Estimation Using Photoplethysmography Only: Comparison between Different Machine Learning Approaches.
    Khalid SG; Zhang J; Chen F; Zheng D
    J Healthc Eng; 2018; 2018():1548647. PubMed ID: 30425819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bayesian Model Averaging for Improving the Accuracy of Cuffless Blood Pressure Estimation.
    Shen Z; Liu L; Ding X
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3981-3984. PubMed ID: 36086255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of cuff-based and cuffless continuous blood pressure measurements in children and adolescents.
    Zachwieja J; Neyman-Bartkowiak A; Rabiega A; Wojciechowska M; Barabasz M; Musielak A; Silska-Dittmar M; Ostalska-Nowicka D
    Clin Exp Hypertens; 2020 Aug; 42(6):512-518. PubMed ID: 31941385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Continuous Blood Pressure Estimation Approach Based on Data Mining Techniques.
    Miao F; Fu N; Zhang YT; Ding XR; Hong X; He Q; Li Y
    IEEE J Biomed Health Inform; 2017 Nov; 21(6):1730-1740. PubMed ID: 28463207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulse Transit Time Based Continuous Cuffless Blood Pressure Estimation: A New Extension and A Comprehensive Evaluation.
    Ding X; Yan BP; Zhang YT; Liu J; Zhao N; Tsang HK
    Sci Rep; 2017 Sep; 7(1):11554. PubMed ID: 28912525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-source PPG-based local pulse wave velocity measurement: a potential cuffless blood pressure estimation technique.
    Nabeel PM; Jayaraj J; Mohanasankar S
    Physiol Meas; 2017 Nov; 38(12):2122-2140. PubMed ID: 29058686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of cuffless blood pressure estimation method based on multiple physiological parameters.
    Zhang Y; Zhou C; Huang Z; Ye X
    Physiol Meas; 2021 Jun; 42(5):. PubMed ID: 33857923
    [No Abstract]   [Full Text] [Related]  

  • 17. Noninvasive Cuffless Blood Pressure Estimation With Dendritic Neural Regression.
    Ji J; Dong M; Lin Q; Tan KC
    IEEE Trans Cybern; 2023 Jul; 53(7):4162-4174. PubMed ID: 35113792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CiGNN: A Causality-Informed and Graph Neural Network Based Framework for Cuffless Continuous Blood Pressure Estimation.
    Liu L; Lu H; Whelan M; Chen Y; Ding X
    IEEE J Biomed Health Inform; 2024 May; 28(5):2674-2686. PubMed ID: 38478458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cuffless blood pressure estimation using chaotic features of photoplethysmograms and parallel convolutional neural network.
    Khodabakhshi MB; Eslamyeh N; Sadredini SZ; Ghamari M
    Comput Methods Programs Biomed; 2022 Nov; 226():107131. PubMed ID: 36137326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous cuffless and non-invasive measurement of arterial blood pressure-concepts and future perspectives.
    Pilz N; Patzak A; Bothe TL
    Blood Press; 2022 Dec; 31(1):254-269. PubMed ID: 36184775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.